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Resumen

La presente memoria describe el disefio e implementacién de un generador de
lenguaje natural que permite a un robot instructor transformar un conjunto de
valores numéricos en expresiones lingtiisticas relacionadas con la actividad de
seguimiento de pared, con el objetivo de facilitar un proceso de ensefianza mds
natural en la sociedad de robots del sistema de co-evoluciéon genética y
neuro-memética (GeNeSys).

Para lograr este proposito, se generé un conjunto de datos utilizando un sistema
de inferencia difusa. Ademads, se consideraron categorias como
preprocesamiento de texto, redes neuronales recurrentes y modelos de
aprendizaje profundo modernos.
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Capitulo 1

Introduccién general

En este capitulo, se detallan los conceptos bésicos de la generacién de texto a par-
tir de datos, comtinmente conocida como D2T (Data2Text) y la 16gica difusa, que
constituyen la base tedrica de este trabajo. Ademads, se referencian investigaciones
efectuadas por otros autores que han realizado tareas que se pueden considerar
similares. También se describe el objetivo y las actividades que delimitan el alcan-
ce del modelo propuesto de generacioén de lenguaje.

1.1. Concepto datos a texto

La generacion de texto a partir de datos es un campo de investigacion en el que
se busca producir expresiones lingtiisticas que describan adecuada y fluidamente
entradas no lingtiisticas como tablas de bases de datos, articulos o simulaciones
de sistemas fisicos [1].

Existen diferentes enfoques principales para generar texto a partir de datos, entre
ellos se encuentran el uso de reglas, plantillas y redes neuronales. Los métodos
basados en reglas y plantillas son ampliamente utilizados en diversas aplicacio-
nes debido a su capacidad para brindar un control e interpretacién claros de los
datos, lo que ayuda a garantizar la precisién del texto generado. Si bien estos
métodos requieren un trabajo manual intenso para definir caracteristicas y lograr
una alta calidad en las reglas y plantillas, en ocasiones son necesarios para obte-
ner resultados precisos y efectivos.

Los modelos basados en redes neuronales se fundamentan principalmente en da-
tos y requieren menos intervenciéon humana. Estos modelos pueden generar fa-
cilmente textos descriptivos y fluidos, pero resulta més desafiante garantizar que
los textos generados sean fieles a los datos de entrada [2].

1.2. Légica difusa

En 1965, Lotfi A. Zadeh introdujo la 16gica difusa definida como una forma de 16-
gica multivaluada que permite definir valores intermedios entre las evaluaciones
tradicionales, como verdadero/falso, si/no, alto/bajo, etc. Esto facilita la aplica-
cién de un enfoque maés natural e intuitivo en la programacion de computadoras
al permitir la formulacién matemaética y el procesamiento de terminologia ambi-
glia, tal como “bastante alto” o “muy rapido” [3].
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Considerando un conglomerado de elementos discretos o continuos, un conjunto
difuso es una funcién que define matemadticamente el grado con el que cada ele-
mento pertenece a cierta categoria [4]. Asi, cada elemento es clasificado mediante
un valor comprendido entre 0 y 1. Estos conjuntos difusos formalizan numérica-
mente la ambigiiedad inherente en dicha clasificacién, ampliando asi la nocién
de inclusién y permitiendo operaciones tales como la unién, interseccién y com-
plemento entre clases de elementos.
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FIGURA 1.1. Ejemplo de conjuntos difusos de 2 caracteristicas '.

1.3. Planteamiento y oportunidad del problema

Implementado por [5], el sistema de co-evolucién genética y neuro-memética (Ge-
NeSys) consiste en una sociedad de robots capaces de desarrollar y propagar cul-
turalmente cierto comportamiento, mediante la interaccién social entre “instruc-
tores” e “imitadores”, usando un modelo computacional de replicacién neuro-
memética que fue validado mediante sistemas conexionistas tales como el mapa
auto-organizado (SOM, del inglés, Self-Organizing Maps) y la red adaptativa de
inferencia difusa (ANFIS, del inglés, Adaptive-Network based Fuzzy Inference Sys-
tem).

En el respectivo proceso cultural de ensefianza-aprendizaje, cada robot entrega
valores numéricos que, por un lado, representan el comportamiento que es exhi-
bido por algtin robot, y por otro lado, representan la informacién que este puede
compartir con otros robots. La vinculacién de un generador de lenguaje natural
(NLG, del ingles Natural Language Generation) al sistema GeNeSys busca satisfa-
cer una necesidad previamente identificada por el lider del proyecto, en cuanto
a incrementar la naturalidad en la interaccion entre los individuos bio-culturales,
alli denominados: GeNeBots. Eventualmente, esta propuesta investigativa puede
servir de base para que en diversos &mbitos empresariales puedan desarrollarse
modelos que interpreten lingiiisticamente datos numéricos, expresdndose en la
terminologia propia del contexto en donde se pretenda aplicar, ya sea bancario,
médico, de manufactura, u otros.

1Imagen tomada de [3]
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1.4. Estado del arte

La generacion de texto a partir de datos es un campo en constante evolucién y
desarrollo. En este existen diversas herramientas y técnicas disponibles para ge-
nerar texto automaticamente desde datos estructurados o no estructurados, asi
como herramientas en linea que utilizan inteligencia artificial y algoritmos com-
plejos basados en reglas. Algunas utilizan técnicas avanzadas de procesamiento
del lenguaje natural donde la calidad del texto generado depende en gran medi-
da de la calidad y cantidad de datos disponibles; asi como de la capacidad de la
herramienta para analizar y comprender los datos. En esta seccién se describirdn
algunas investigaciones previas que han servido de guia para la elaboracion de
este trabajo.

1.4.1. Generacién neuronal consciente de la 16gica

Esta investigacion presenta un método que se enfoca en detectar posibles riesgos
en los datos de entrada y explicar en lenguaje natural comportamientos anorma-
les correspondientes al lavado de dinero. El enfoque propuesto, llamado genera-
cién neuronal consciente de la 16gica (LANG, del inglés Logic Aware Neural Gene-
ration), combina la modelizacién légica con la generacién de texto. Para lograrlo,
se utilizan reglas expertas que se convierten en un grafo légico, y un codificador
basado en metapaths que aprovecha el conocimiento especializado [6]. Ademas,
se emplea un médulo recuperador basado en capas de atencion para vincular los
datos numéricos de entrada con el texto objetivo y una estrategia de pérdida ba-
sada en las reglas mencionadas que mejora la precision en la generaciéon de texto
(ver figura 1.2)

Attention-based retrieval Top Down Attention LSTM
K, = t p2 L op2 A2
HEGBEWL ] - hi-y h hi
The amount of one transaction is -] 2
large g A ‘ 2nd Layer ‘ 2nd Layer ‘ 2nd Layer ‘
HEH RIS | E A A /
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E ‘ t-1 : | hiyy
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. [
, '. = 1st Layer 1st Layer 1st Layer
7 i T
s] =] L] [l ;
‘-, . _n * topl hi; Yiz ke, Vi hi »
v
- il T | il Tk
10 MLE Loss
Rule Loss
Encxiday Rule vocab
transformer & 0E !
The customer has too many rebate
transactions
sagmant RRIERA
Frequent transactions at midnight
position
cian —— _"ﬁ_ SO
Aule Logle
Rl CTif.v) AEQUFvs)
R2 LT{fuvs) ¥ EQUf7)
Rn GT(fevs) ALTCR b)
Table Data Logic Graph-meta path Rule-based retrieval

FIGURA 1.2. Arquitectura de LANG 2.

2imagen tomada de [6]
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1.4.2. Indice de calidad del aire

En este estudio, se presenta un enfoque basado en inteligencia computacional
y generacién de lenguaje natural para la elaboracién automaética de resiimenes
a partir de series de datos numéricos. El objetivo es proporcionar informaciéon
relevante oculta en los datos y facilitar la comprensién a los usuarios utilizando
lo que los autores denominan ontologia temporal difusa. El objetivo es realizar
una evaluacién exhaustiva utilizando datos reales del indice de calidad del aire
(ICA) [7].

El proyecto utiliza 38 reglas difusas en forma trapezoidal que componen el disefio
gramatical del resumen ICA, y ha recibido calificaciones satisfactorias por parte
de los expertos. Actualmente el modelo se encuentra en funcionamiento en la
web oficial de MeteoGalicia [7].

1.4.3. Desafio en la generacién de texto a partir de datos

Challenge in Data-2-text Generation es un trabajo que plantea una tarea mas de-
safiante de generacion de texto a partir de datos y se presenta un nuevo corpus
a gran escala que contiene registros de datos emparejados con documentos des-
criptivos. Los experimentos muestran que dichos modelos generan texto de for-
ma fluida, pero no logran aproximarse de manera convincente a la calidad de los
documentos generados por humanos [8].

El modelo base utilizado realiza un embedding de algunas caracteristicas princi-
pales de forma individual insertdndolas en un perceptrén multicapa (MLP, del
inglés Multi-Layer Perceptron) de una capa oculta para pasar a un modelo neuro-
nal recurrente tipo LSTM, del inglés Long-Short Term Memory.

1.4.4. Operaciones guiadas por modelos neuronales secuencia a secuen-
cia seq2seq

Esta propuesta denominada OpAtt (abreviatura del inglés Operation guided Atten-
tion based sequence to sequence network) consiste en utilizar informacién de opera-
ciones pre-ejecutadas en los datos de entrada para guiar la generacién de texto. El
modelo propuesto consta de un codificador de registros, un codificador de opera-
ciones y un codificador de resultados de operaciones, junto con un decodificador
de unidad recurrente con compuertas (GRU, del inglés Gated Recurrent Unit) equi-
pado con atencién y un mecanismo de compuerta (ver figura 1.3). Los resultados
pre-ejecutados obtenidos de las operaciones acttian como hechos inferidos para
guiar la generacion y se utiliza una capa de cuantizacién para establecer corres-
pondencias entre resultados numéricos y elecciones léxicas [9].
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FIGURA 1.3. Pre-ejecucion de datos y arquitectura de OpAtt >.

1.4.5. Seleccién de contenido, macroplanificacién y planificacién se-
cuencial variacional

Las investigaciones lideradas por Ratish Puduppully se centran en el enfoque
D2T utilizando conjuntos de datos deportivos y métodos de extraccién de infor-
macién para ser incorporados en el modelo base mencionado en la seccién 1.4.3.
A continuacién, se describen brevemente estos trabajos y los cambios que se han
realizado entre ellos [10] [1].

= Seleccién de contenido y planeacién: una capa adicional denominada con-
tent select gate tiene la finalidad de calcular puntuaciones para cada entrada
en relacién con los demds datos del conjunto tabular como se evidencia en
la figura 1.4 a. Estas puntuaciones se someten a una funcién sigmoide y se
realiza una operacién de producto punto con los valores de entrada y asi
genera una matriz que representa el selector de contenido [10]. Esta mejora
en el modelo base permite resaltar la relevancia de ciertos datos durante el
proceso de generacion de texto para llegar a la etapa de decodificaciéon del
texto (ver figura 1.4 b).

Content Content T{"gﬂgrsrfﬂﬂﬂ:rs
Home/ c . -3) stunned e
Name Type Value ontent Selection Planning Los Angeles Ciippers
P Away (20 Selection Gate Network {3;‘;77;"::: "
rg T Staples Cenfer ...

21 T2z T3 T24 N - . l T

R ’ Col1 Col2 Record + —
Row1 o n Record ¥ ——» Deceoxder
T21 T2z T23 Toa Row2 & v Record =
(a) (b)

FIGURA 1.4. a) Esquema de selector de contenido. b) Flujo de pro-
cesamiento del modelo *.

3Imagen tomada de [9]

4Imagen tomada de [10]
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» Macroplanificacién: es una ampliacion del modelo de seleccién de conteni-
do y planificacién que involucra un preprocesamiento de datos a un nivel
mads alto. En este contexto, se define un macro plan COMoO una secuencia
estructural de parrafos que se separan mediante el uso de una etiqueta o
marcador de discurso <P>. Cada plan de parrafo describe una secuencia de
entidades y eventos que se refieren a jugadores individuales o equipos y su
desempefio en un juego de béisbol. Las entidades y eventos se verbalizan
en una secuencia de texto utilizando tokens especiales para indicar el tipo y
valor de cada registro en la tabla de datos.

= Planificacién secuencial variacional: el enfoque utiliza técnicas de inferencia
variacional para modelar la distribucién latente de los macroplanes en la
generacion de texto a partir de datos estructurados. El modelo consiste en
un codificador que mapea los datos de entrada a una distribucién latente
y un decodificador que genera los macroplanes. Durante el entrenamiento,
se maximiza la evidencia inferior para capturar la incertidumbre inherente
en la generacion de planes secuenciales [1]. Esto permite al modelo generar
macroplanes de alta calidad y capturar la coherencia y estructura del texto
final.

1.4.6. Tabla comparativa de modelos D2T

La comparativa realizada de los modelos se hace en referencia a la aplica-
bilidad al modelo NLG del sistema GeneSys; el nivel de aplicabilidad se
define con base al nivel de preprocesamiento de datos y complejidad del
modelo, motivos por los que puede ser ineficiente computacionalmente en
un eventual despliegue.

TABLA 1.1. Comparaciéon de modelos en generacién de texto.

Modelo Preprocesado Complejidad Aplicabilidad
LANG Media Alta Media
Ontologia temporal difusa Media Media Media
Operaciones guiadas OpAtt Alto Alta Media
Seleccién de contenido Muy Alto Media Limitada
Macroplanificacion Muy Alto Media Limitada
Planificacién secuencial variacional Muy alto Alta Limitada

1.5. Motivacion

La literatura existente revela que los modelos actuales para esta tarea son comple-
jos y requieren un extenso preprocesamiento de datos, esto limita su aplicabilidad
en situaciones précticas. La motivacién detrds de este proyecto es desarrollar un
enfoque mads sencillo y efectivo que permita generar instrucciones lingiiisticas en
el proceso de ensefianza-aprendizaje del proyecto GeNeSys, con la intencién de
lograr un modelo sencillo que facilite la generacién de texto en diversos contex-
tos. Asi, este trabajo pretende simplificar el proceso D2T y obtener resultados de
calidad sin la necesidad de técnicas complejas de preprocesamiento.
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1.6. Objetivos y alcance

Considerando los 4 valores numéricos (P, D, L, R) que definen el comportamiento
de los robots en el sistema GeNeSys, el objetivo de este proyecto es desarrollar
un modelo generador de lenguaje natural, que sea capaz de producir expresiones
lingtiisticas basadas en dichos valores. Esto le permitiria a un robot “instructor”
verbalizar su propio comportamiento, con el fin de recomendarselo a otros robots.
Para lograr lo propuesto se plantean los siguientes objetivos especificos:

= Obtener una base de datos, a partir de un sistema de inferencia difusa (FIS,
del inglés Fuzzy Inference System), que sea ttil para entrenar el modelo pro-
puesto.

= Realizar un preprocesamiento de datos corto que permita al modelo un en-
trenamiento rdpido y una generacién de secuencias que sean computacio-
nalmente eficientes.

= Implementar el modelo propuesto en ambiente de simulacion del sistema
GeNeSys.

» Evidenciar las secuencias generadas con datos de prueba provenientes del
FIS y los generados de los sistemas conexionistas del GeNeSys.






Capitulo 2

Introduccién especifica

En este capitulo se detallan algunos de los conceptos fundamentales en el uso de
lenguaje natural, por parte de los sistemas de inferencia difusa y en la genera-
cién de lenguaje natural (NLG) por parte de las redes neuronales recurrentes. Asi
mismo, se detallan algunos aspectos del sistema GeNeSys que son claves para la
generacion de las variables de entrada.

2.1. Sistema de inferencia difusa tipo Mamdani

Propuesto en 1975 por Ebrahim Mamdani, es probablemente el método maés uti-
lizado como mecanismo de inferencia difusa [11]. Es un enfoque utilizado para la
construccién de sistemas de control difuso que se fundamenta en reglas difusas
si-entonces ([F-THEN) y utiliza el concepto de conjuntos difusos mencionados en
la seccion 1.2 para representar la incertidumbre y la imprecision en los datos de
entrada y salida.

El FIS Mamdani es practico y eficiente para definir términos lingtiisticos y conjun-
tos difusos. por lo tanto, permite generar un conjunto de datos que se aproxime
a las caracteristicas de los sistemas conexionistas de los robots del GeNeSys, que
dependen de la 16gica difusa (ver secciéon 2.2.1). Para lograr esto, el FIS Mamdani
sigue una serie de pasos: fuzzyficacion, activacién de reglas difusas y defuzzyfi-
caciéon. A continuacién, se describen estos pasos.

2.1.1. Fuzzyficacién

En esta fase, se calcula el grado de pertenencia de esas variables a todos los con-
juntos difusos posibles [12]. En la figura 2.1 se puede observar el valor de mem-
bresia para dos conjuntos difusos denominados “baja” y “media” para un deter-
minado valor de temperatura.
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Grado de
5 pertenencia
10 °C
1
0.8 \
0.6
0.4
0.2
o Temperatura
0 6.67 13.33 20.00 26.67

—Bijd  =—edia

FIGURA 2.1. Funcién de membresia temperatura baja y media pa-
ra 10 °CL.

Para definir un conjunto difuso triangular, se establecen los limites a (limite in-
ferior), b (limite superior) y m (punta del tridngulo). El valor de pertenencia se
calcula de acuerdo con la ecuaciéon 2.1.

0 siz<a
L=¢  gig<z<m
plr) =P (2.1)
b= Sim <z <b
0 siz>b

2.1.2. Activacién de las reglas difusas

Los modelos difusos de Mamdani no necesitan modelos matematicos del sistema
a controlar y se obtienen a partir de reglas difusas o enunciados condicionales di-
fusos. Por ejemplo, si el error de presion es negativo y grande, entonces el cambio
de calor es positivo y grande [13], donde el término “error” se refiere a la diferen-
cia entre el valor real de la variable y el punto de referencia (setpoint). En general,
las reglas de tipo Mamdani tienen la siguiente forma:

R; :ifXisA;, XisA;, ..., XisA;thenY isB;. (2.2)

Aqui es donde se deben realizar las operaciones con los conjuntos difusos pre-
determinados. Existe una generalizacién de las funciones que definen la unién
y la interseccién de conjuntos difusos, conocidas como conorma triangular (T-
Conorma) y norma triangular (T-Norma). En la mayoria de las aplicaciones de
ingenieria basadas en légica difusa, se opta por utilizar el operador maximo co-
mo T-Conorma y el operador minimo como T-Norma [14], el dltimo utilizado en
los propésitos del FIS de este trabajo. La intersecciéon de dos conjuntos difusos A
y B es un conjunto difuso A N B en U con funcién de pertenencia definida en la
ecuacion 2.3.

!Elaboracién propia basada en [12]
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frang () = min[pa(z), pp(x)] (2.3)

2.1.3. Defuzzyficacion

Es el proceso de tomar las salidas difusas y convertirlas en un valor de salida
tnico o nitido. Este proceso puede ser realizado por cualquiera de varios métodos
de defuzzificacién [15]. En esta investigacion se utilizé el método de centroide
calculado con la ecuacién 2.4

Do (Yi X pg)
Z?:1 122

Centroide = (2.4)

2.2. Sistema GeNeSys

El sistema de co-evolucién genética y neuro-memética (GeNeSys) es un modelo
computacional de la emergencia y propagacion cultural de cierto comportamien-
to, en una sociedad de robots. Alli cada robot, como individuo auténomo, estd do-
tado con sistemas conexionistas muy sencillos capaces de aprendizaje auténomo
y social, cuya topologia es heredada mediante mecanismos genéticos. Con dichos
sistemas, cada robot puede descubrir por si mismo patrones comportamentales
utiles, o bien “imitar” a otros individuos que ya tengan el conocimiento. En el
escenario “imitativo”, es en donde se utiliza la replicacién neuro-memética co-
mo mecanismo de herencia cultural [16] y por el efecto Baldwin, los individuos
con mejores comportamientos adquiridos y mejor habilidad para “ensefiarlos”
son los mas atractivos en la reproduccién sexual. En términos de robética evolu-
tiva, dicha sociedad modela la herencia dual de genes y neuro-memes [16] para
explorar y explotar controladores adaptativos; su objetivo es seguir explorando
y explotando estos controladores hasta que uno de los individuos logre realizar
exitosamente una tarea especifica y demuestre su eficacia también en tareas cola-
borativas.

En contraste con otros modelos sociales y evolutivos, el GeNeSys es un sistema
multi-agente completamente descentralizado y se enfoca en el desarrollo cultural
mediante replicadores que no viajan entre sus huéspedes, razén por la que deben
transmitir su informacién mediante sefiales sociales, exclusivamente.

2.2.1. Sistema de inferencia difusa basada en red adaptativa

La red ANFIS es un sistema de inferencia difusa que posee la capacidad de apren-
der a relacionar las entradas y salidas a través del aprendizaje supervisado. A
diferencia de una red neuronal convencional, ANFIS es una red adaptativa en
la que no existen pesos de conexion, asi los pardmetros que se aprenden estan
asociados a nodos especificos.

En la capa 1 de ANFIS, se lleva a cabo un proceso de fuzzyficacion similar al
mencionado en la seccién 2.1.1 para capturar la incertidumbre y la imprecisién
asociadas a los datos. En la capa 2 se estimulan las reglas difusas con AND difusa,
en la capa 3 se realiza la normalizacién de los datos y por tltimo en la capa 4, se
emplea una decisién inferencial tipo Sugeno. En la figura 2.2 se puede identificar
la arquitectura del ANFIS del GeNeSys.
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Capa 1 Capa 2 Capa 3 Capa 4
Antecedentes  Reglas ~ Normalizacién Consecuentes

FIGURA 2.2. ANFIS del sistema GeNeSys °.

2.2.2. Mapa auto organizado

Se define un modelo que busca representar un espacio multidimensional de en-
trada en un espacio de salida de menor dimensién. La capa de entrada recoge
y canaliza la informacién, mientras que la capa de procesamiento realiza una
proyeccién conservando las caracteristicas esenciales de los datos mediante una
relacion de vecindad entre las neuronas [17]. Al final, se obtiene un mapa auto-
organizado que muestra agrupaciones en el espacio de salida, lo que facilita la
visualizacién y comprension de patrones y relaciones entre los datos.

2.3. Variables de entrada

Los datos clusterizados del SOM son aquellos P, D, L y R seleccionados para ser
compartidos por el potencial robot instructor en el proceso de ensefianza. A con-
tinuacion se realiza una breve descripciéon de cada uno de los valores.

1. Proporcional (P): los robots del GeNeSys estan dotados con sensores de dis-
tancia que se ponderan de manera que el robot tenga una sensibilidad basa-
da en l6bulos gaussianos [5]. Ademas, el robot estd equipado con sensibili-
dad al choque contra la pared, que en conjunto resulta en valores continuos
dentro del rango de -1 a 1 y forma parte del universo de discurso para esta
variable, donde -1 representa la posicion ponderada més alejada de la pared
y 1 representa la posicién mds cercana a la pared.

2. Derivativo (D): esta variable representa la pendiente resultante de la dife-
rencia entre el valor P de la muestra sensorial actual y el valor P de la mues-
tra inmediatamente anterior. También se encuentra en un rango de -1 a 1,
siendo -1 una relacién de cambio no pronunciada hacia la pared y 1 una di-
ferencia muy pronunciada que es una aceleraciéon maxima de acercamiento
a la pared.

3. Motores izquierdo y derecho (L, R): son los valores que representan la velo-
cidad angular de los motores. Al igual que los anteriores valores, se encuen-
tran en un rango continuo de -1 a 1, resultantes de la decisién del ANFIS y
la clusterizacién del SOM.

*Imagen tomada de [5]
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2.4. Arquitecturas con redes neuronales recurrentes

En esta seccién, se detallan dos arquitecturas clave en el campo de la generacién
D2T: LSTM presentada por primera vez en [18] y unidad recurrente de compuer-
tas (GRU) igualmente presentada en [19]. Estas arquitecturas, basadas en redes
neuronales recurrentes (RNN, del inglés Recurrent Neural Network), han demos-
trado su eficacia en la generacién de secuencias de texto coherentes y relevantes.
Ademas, se examinard cémo estas arquitecturas forman parte del famoso mode-
lo Seq2Seq (sequence-to-sequence), utilizado ampliamente en tareas de traduccién
automatica y generacioén de texto.

2.4.1. Celdas de memoria de largo y corto plazo

Segun [18], una LSTM es una arquitectura de RNN disefiada para superar el pro-
blema del gradiente desvaneciente y capturar dependencias a largo plazo en se-
cuencias de datos.

Como se ilustra en la figura 2.3, en una LSTM se introducen unidades de me-
moria especializadas llamadas “celdas de memoria” que tienen la capacidad de
almacenar y propagar informacién a lo largo del tiempo. Estas celdas de memo-
ria estdn compuestas por una unidad central con una conexién autoalimentada
fija llamada carrusel de error constante (CEC). Junto con el CEC, se utilizan dos
compuertas adicionales para regular el flujo de informacién: una compuerta de
entrada (input gate) y una compuerta de salida (output gate), donde la compuerta
de entrada decide cudnta informacién nueva se debe agregar a la celda de memo-
ria y la compuerta de salida controla cudnta informacién de la celda de memoria
se debe transmitir hacia afuera. Ademds, una compuerta de olvido (forget gate)
determina cudnta informacién anterior se debe descartar de la celda de memoria.

~ | 9 gy‘“jm h  hy™
= |©—9>0>0O—9

Wcji yini @ youtj @ wicj
W, /I/I\l\net‘"i We, /I/I\I\net“‘j

FIGURA 2.3. Arquitectura de LSTM presentado en [18]°.

A\

2.4.2. Unidad recurrente con compuertas

En la investigaciéon realizada por [19] se propone una alternativa a la unidad
LSTM, conocida como Unidad Recurrente Cerrada (GRU), con el objetivo de me-
jorar el rendimiento en tareas de modelado de secuencias.

3Imagen tomada y editada de [18]



14

Capitulo 2. Introduccion especifica

La GRU se caracteriza por tener dos compuertas principales (ver figura 2.4): una
de actualizacion (update gate) y una de reinicio (reset gate) que desempefian un
papel fundamental en el control del flujo de informacién dentro de la unidad.
La compuerta de actualizacién determina qué informacion del estado anterior se
debe mantener y qué nueva informacién se debe agregar, mientras que la com-
puerta de reinicio controla qué informacién del estado anterior se debe olvidar.
Asi, las compuertas permiten que la GRU capture dependencias a largo plazo al
decidir qué informacion es relevante y debe mantenerse; de igual forma, decide
qué informacion es irrelevante y debe descartarse.

En cada paso de tiempo, la GRU toma el vector de entrada actual (k) y el estado
oculto anterior h(k — 1). Luego, se calculan las activaciones de las compuertas de
actualizacion y reinicio utilizando funciones sigmoideas, asf estas activaciones se
utilizan para calcular el nuevo estado oculto, que es una combinacién del estado
oculto anterior y el nuevo candidato a estado oculto (state candidate gate). Este
nuevo estado oculto se pasa al siguiente paso de tiempo y también se utiliza como
salida de la unidad.

h(k)
/- Reset qat Update gate
Wk — 1)/ R S - (k)
R, 1| ~_* State candidate
v ok - P " gate
bg—>+4——;q( ) o ;Z(k) Y |

by |—( + b, —>( + . @m
alh = 1) g B

FIGURA 2.4. Arquitectura de GRU *.

2.4.3. Modelo secuencia a secuencia con RNN

En la investigacion efectuada por [21] del equipo de Google, se presenta un en-
foque basado en RNN para abordar el desafio de la traduccién automatica. En
lugar de depender de técnicas tradicionales basadas en modelos de lenguaje es-
tadisticos o basados en frases, los autores proponen el uso de un codificador y
un decodificador para transformar secuencias de entrada en secuencias de salida
correspondientes.

El codificador consiste en celdas LSTM que procesan la secuencia de entrada pala-
bra por palabra y genera una representacion vectorial de estado oculto que captu-
ra la informacion relevante de la secuencia. Esta representacién de estado oculto
condensa la secuencia de entrada en un vector fijo de dimensionalidad fija. El de-
codificador, que también se compone de celdas LSTM, recibe el estado oculto del

4Imagen tomada de [20]
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codificador y lo utiliza como contexto para generar una secuencia de salida paso
a paso.

El modelo fue entrenado utilizando un corpus paralelo en pares de oraciones
correspondientes a los idiomas de origen y destino. Se empleé un enfoque de
entrenamiento supervisado en el qué se introduce la secuencia de entrada en el
codificador y se entrena el decodificador para generar la secuencia de salida co-
rrespondiente. Se llevaron a cabo experimentos comparativos que demostraron
que el modelo secuencia a secuencia es considerablemente mas eficiente que los
métodos basados en modelos de lenguaje estadisticos y en frases. Por ende, sus
resultados reflejan mejoras significativas en la calidad de la traduccién.

2.4.4. Comparativa de redes neuronales recurrentes

Los resultados de los experimentos revelan que las unidades LSTM y GRU su-
peran a las unidades recurrentes més tradicionales que utilizan la funcién de
activacion tangente hiperbélica (tanh). Se ha demostrado que las celdas con me-
canismos de compuertas son més efectivas para capturar dependencias a largo
plazo en las secuencias y lograr mejores resultados [22]. La figura 2.5 ilustra di-
chos resultados en dos conjuntos de datos de sonidos polifénicos, considerando
diferentes épocas de entrenamiento y tiempo. Aunque la GRU es mds eficiente
computacionalmente debido a su menor cantidad de pardmetros (ver tabla 2.1),
sus resultados son similares a los obtenidos por la LSTM.
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FIGURA 2.5. Resultados de RNNs en datasets de sonidos poliféni-
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Con los modelos para sefiales de habla presentados en la tabla 2.1, se muestran
los resultados detallados en la figura 2.6. Estos resultados respaldan la afirma-
cién de que tanto GRU como LSTM son comparables en términos de sus métricas
de rendimiento en el contexto de sefiales de habla y que GRU tiene una ventaja
significativa en términos de eficiencia computacional.

TABLA 2.1. Modelos utilizados en [22] para realizar pruebas de
rendimiento en conjuntos de datos.

Conjunto de datos RNN Neuronas Pardametros

Sonidos polifénicos  tanh 100 ~ 20100
Sonidos polifénicos LSTM 36 ~ 19800
Sonidos polifénicos GRU 46 ~ 20200
Seniales de habla tanh 400 ~ 168400
Sefiales de habla LSTM 195 ~ 169100
Seniales de habla GRU 227 ~ 168900
Per epoch
=— tanh train =—= tanh train
loss = -+ tanh valid loss = -« tanh valid
»—a GRU train 102 s—a GRU train
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Diseiio e implementacion

En esta seccién, se abordara la aplicacién del FIS Mamdani para generar el data-
set utilizado en el entrenamiento del modelo seg2seq. Ademads, se describird cémo
se realiz¢ la clasificacion de las frases objetivo y cémo se 1llev6 a cabo su prepro-
cesamiento para adaptarlas al modelo NLG del sistema GeNeSys. Por dltimo, se
presentardn las caracteristicas especificas utilizadas en el entrenamiento de dicho
modelo.

3.1. Generacién del conjunto de datos de entrenamiento

Los robots del sistema GeNeSys que poseen el conocimiento para ejecutar la ta-
rea de seguimiento de pared, actiian como potenciales instructores en la eventual
interaccién de robots. Estos robots generan las variables descritas en la seccién
2.3. Cada rango de estos valores determina el universo de discurso, donde inter-
acttian los conjuntos difusos y se ejecutan los pasos del controlador Mamdani.

Los conjuntos difusos son triangulares para todos sus componentes, por lo tanto,
sus grados de pertenencia se calculan mediante la ecuacién 2.1.

3.1.1. Definicién de conjuntos difusos

Cada uno de los términos lingtiisticos asociados a los valores P, D, L y R guarda
una relacién semadntica con el propoésito de cada uno de ellos en el proceso de
generalizacion y clusterizacion del GeNeSyS (descritos en la seccién 2.3). En la fi-
gura 3.1a, el valor P graficamente representado, consta de 5 términos que ilustran
de manera ambigua la cercania o lejania a la pared. De manera similar, la figura
3.1b muestra el valor D, que indica si el objeto se estd acercando o alejando.

En cuanto a los valores L y R, se definen 11 conjuntos difusos, cuyos términos
lingiiisticos se representan de forma préctica en la figura 3.1c, abarcando valores
discretos que van desde -0.9 hasta +0.9. Estos términos lingiiisticos estdn relacio-
nados con la velocidad angular de los motores y su ambigiiedad seméntica se
puede apreciar en la tabla 3.1. Cada término utilizado en los nombres de los con-
juntos difusos puede incluir expresiones y modismos particulares que se apren-
den a través de la experiencia y la interaccién de los individuos.
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FIGURA 3.1. Representacién grafica de conjuntos difusos de todos
los componentes.
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TABLA 3.1. Valores discretos y términos lingtiisticos correspon-
dientes a la figura 3.1c.

Valor Término lingiiistico

-0.9  Muy rdpido hacia atras

-0.8 Bastante rdpido hacia atras
-04  Ma4s o menos rdpido hacia atras
-0.3 Despacito hacia atras

-0.1 ~ Muy lento hacia atras

0.1 Muy lento hacia delante

0.3 Despacito hacia delante

0.5 Medio rapido hacia delante
0.6 Rapidamente hacia delante
0.8 Bastante rdpido hacia delante
0.9 Muy répido hacia delante

3.1.2. Memoria asociativa difusa

De acuerdo a la cantidad de conjuntos difusos en los componentes P y D, existen
15 posibles combinaciones que activan una regla especifica mediante la ecuacién
2.2, siendo estas reglas parte de un conocimiento experto que de forma nativa
requiere el FIS Mamdani [23]. Los valores de pertenencia de P y D generan la
activacion de una regla posible como se puede ver en la tabla 3.2. Por ejemplo, si
un determinado valor P y otro D pertenecen al conjunto “Lejos” y “Acercandose”
con grado de pertenencia 1 respectivamente, se activa la regla 0.5 del valor L y
0.1 de R. Al Verificar la tabla 3.1 se observa que el valor L activa la regla “Medio
rapido hacia delante” mientras que el valor R activa “Muy lento hacia delante”.

TABLA 3.2. Activacién de reglas L y R

(A) Reglas componente L

MuyLejos Lejos Ok Cerca MuyCerca

Acercandose 0.6 0.5 -0.1  -09 -0.3
SinCambio 0.8 0.6 0.3 -0.8 -0.3
Alejandose 0.9 08 06 01 -0.3

(B) Reglas componente R

MuyLejos Lejos Ok Cerca MuyCerca

Acercandose -0.1 0.1 0.6 0.9 -0.3
SinCambio -0.3 -0.1 0.3 0.8 -0.3
Alejandose -0.4 -03 -01 05 -0.3

3.1.3. Tabulacidon de los datos

Implementando Python, se generaron diez mil valores aleatorios para los compo-
nentes Py D, distribuidos uniformemente dentro de sus respectivos universos de
discurso. Estos valores se utilizaron como las primeras dos caracteristicas o fea-
tures del conjunto de datos para el entrenamiento. Para computar los valores de
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L y R, se cre6 una instancia de un controlador FIS utilizando la librerfa skfuzzy.
Este controlador recibi6é todos los valores de P y D como pardmetros, los que se
denominan “antecedentes” segtn la libreria [24]. Los valores de P y D se asig-
naron a los conjuntos difusos respectivos de las figuras 3.1a y 3.1b como valores
predeterminados. Luego, se calcularon los valores utilizando la ecuacién 2.4. El
resultado de este célculo es un valor que forma parte del universo de discurso
“consecuente”, cuyos conjuntos difusos estdn representados en la figura 3.1c.

La libreria skfuzzy proporciona métodos que permiten obtener informacién po-
tencialmente ttil para el entrenamiento del modelo, como el término lingiiistico
asociado al respectivo conjunto difuso y su grado de pertenencia. En las tablas
3.4y 3.5 se muestra la informacién obtenida de skfuzzy basada en los valores de
P, D, Ly R dela tabla 3.3.

TABLA 3.3. Valoresde P, D, Ly R

P D L R

0.0347 0.1795 -0.1579 0.5969
-0.9689 0.8072 0.6261 -0.0919
09820 -0.2112 -0.2398 -0.2265
0.0116 -0.0365 0.3073 0.2190
-0.9307 0.2698  0.6200 -0.0840

TABLA 3.4. Informacién adicional de Py D

Conjunto difuso P Pertenencia P Conjunto difuso D Pertenencia D

ok 0.91 acercandose 0.90
muy lejos 0.95 acercandose 1.0
muy cerca 0.97 alejandose 1.0

ok 0.97 sin cambio 0.82
muy lejos 0.88 acercandose 1.0

TABLA 3.5. Informacién adicional de L y R

Conjunto difuso L Pertenencia L Conjunto difuso R Pertenencia R
muy lento hacia atras 0.71 répidamente hacia delante 0.97
rapidamente hacia delante 0.87 muy lento hacia atrés 0.96
despacito hacia atras 0.69 despacito hacia atras 0.63
despacito hacia delante 0.96 despacito hacia delante 0.59
rapidamente hacia delante 0.90 muy lento hacia atras 0.92

3.2. Preprocesamiento del texto y los datos

De los datos tabulados obtenidos, los componentes P y D se generaron aleatoria-
mente dentro de rangos especificos con el objetivo de condicionar al FIS y obte-
ner valores con grados de pertenencia superiores a 0.8 para cada conjunto difuso.
Esta condicién se muestra en la tabla 3.4 y es importante tener en cuenta estas
condiciones durante el preprocesamiento de todos los datos numéricos.
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3.2.1. Anadlisis exploratorio de datos

En el andlisis de los datos, se observa una clara agrupacion de los conjuntos difu-
sos Py D en su distribucién. Sin embargo, los valores L y R no presentan la misma
tendencia, como se evidencia en la grafica 3.2. Esta disparidad se debe a la depen-
dencia de los conjuntos L y R con respecto a la inferencia Mamdani, que se explica
detalladamente en la seccién 2.1. Ademads, al examinar las agrupaciones en pares
de componentes en la misma figura, se puede apreciar la posible existencia de
correlaciones entre ellos. Estas correlaciones se visualizan en la figura 3.3 y son
coherentes con los comportamientos esperados para una tarea de seguimiento de
pared. A partir de estas observaciones, se puede llegar a una conclusién preli-
minar en la que el FIS Mamdani adopta decisiones més drdsticas para alejarse o
acercarse a la pared con el motor izquierdo.
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Matriz de correlacidn

100

-0.00029

0.38 0.75

- 0.50

-0.00029

- 0.25

- 0.00

--0.25

-—0.50

-0.75

-1.00

Q Q Y >

FIGURA 3.3. Correlacién de P, D, L y R%.

3.2.2. Etiquetado de datos y asignacién de frases objetivo

Es factible llevar a cabo la categorizacién de cada uno de los registros presentes en
el conjunto de datos mediante la aplicacion de las reglas activadas en la memoria
asociativa difusa, detalladas exhaustivamente en las tablas 3.2. En aras de esta-
blecer un proceso automatico de asignacién de frases, se han asignado categorias
especificas que se encuentran expuestas en la tabla 3.6 y acttian como etiquetas
descriptivas. En la figura 3.4 se puede visualizar la distribucién de los datos por
las categorias previamente expuestas.

Siguiendo el ejemplo expuesto en la seccion 3.1.2, donde se considera P como
“Lejos”, D como “Acercdndose”, L como “Medio rdpido hacia delante” y R “Muy
lento hacia delante”, es posible concatenar estos cuatro conjuntos difusos para
obtener una estructura de frase completa. Esta estructura se verd complemen-
tada con los demés componentes de una oracion estructurada, resultando en la
siguiente formulacién: “Cuando estés lejos de la pared y te estes acercando a ella,
gira tu rueda izquierda medio radpido hacia delante y tu rueda derecha medio len-
to hacia delante”. Mediante este enfoque, se logra generar una frase que puede
ser considerada como una potencial instruccién verbalizada, susceptible de ser
emitida por el robot instructor perteneciente al sistema GeNeSys. Asimismo, es
importante destacar que las frases establecidas como etiquetas en las quince cate-
gorias correspondientes, pueden ser consultadas en la tabla 3.7 y seran utilizadas
en calidad de corpus textual para la herramienta de tokenizacién integrada en el
framework Keras con relleno de secuencias. De este modo, se viabiliza un enfo-
que integral que favorece la tarea de procesamiento y andlisis del lenguaje natural
en el contexto planteado.
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TABLA 3.6. Datos de los conjuntos P, D y categoria

Conjunto P Conjunto D Categoria
Muy lejos  Acercandose 1
Lejos Acercandose 2
Ok Acercandose 3
Cerca Acercandose 4
Muy cerca  Acercandose 5
Muy lejos  Sin cambio 6
Lejos Sin cambio 7
Ok Sin cambio 8
Cerca Sin cambio 9
Muy cerca  Sin cambio 10
Muy lejos  Alejandose 11
lejos Alejandose 12
ok Alejandose 13
Cerca Alejandose 14
Muy cerca  Alejandose 15
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TABLA 3.7. Frases por categoria

Categoria Frase

1

10

11

12

13

14

15

Cuando estés muy lejos de la pared, pero te estds acercando a ella,
gira tu rueda izquierda rapidamente hacia delante, y gira tu rueda
derecha muy lento hacia atras.

Cuando estés lejos de la pared, pero te estas acercando a ella, gira
tu rueda izquierda medio rdpido hacia delante, y gira tu rueda
derecha muy lento hacia delante.

Cuando estés a la distancia requerida, pero te estds acercando a
la pared, gira tu rueda izquierda muy lento hacia atrds, y gira tu
rueda derecha rdpidamente hacia delante.

Cuando estés cerca a la pared, y te estds acercando maés a ella, gira
tu rueda izquierda muy rdpido hacia atras, y gira tu rueda derecha
muy rdpido hacia delante.

Cuando estés muy cerca a la pared, y te estds acercando aun més a
ella, gira tu rueda izquierda despacito hacia atrds, y gira tu rueda
derecha despacito hacia atras.

Cuando estés muy lejos de la pared, pero ni te alejas mas ni te acer-
cas a ella, gira tu rueda izquierda bastante rapido hacia delante, y
gira tu rueda derecha despacito hacia atras.

Cuando estés lejos de la pared, pero ni te alejas més ni te acercas a
ella, gira tu rueda izquierda rdpidamente hacia delante, y gira tu
rueda derecha muy lento hacia atrés.

Cuando estés a la distancia requerida, y ni te alejas ni te acercas
a ella, gira tu rueda izquierda despacito hacia delante, y gira tu
rueda derecha despacito hacia delante.

Cuando estés cerca a la pared, pero ni te acercas més ni te alejas de
ella, gira tu rueda izquierda bastante rdpido hacia atrés, y gira tu
rueda derecha bastante rapido hacia delante.

Cuando estés muy cerca a la pared, pero ni te acercas mds ni te
alejas de ella, gira tu rueda izquierda despacito hacia atrds, y gira
tu rueda derecha despacito hacia atras.

Cuando estés muy lejos de la pared, y te estds alejando atin mas
de ella, gira tu rueda izquierda muy rédpido hacia delante y gira tu
rueda derecha més o menos rapido hacia atras.

Cuando estés lejos de la pared, y te estds alejando mads de ella, gira
tu rueda izquierda bastante rapido hacia delante, y gira tu rueda
derecha despacito hacia atras.

Cuando estés a la distancia requerida, pero te estas alejando de la
pared, gira tu rueda izquierda rapidamente hacia delante, y gira
tu rueda derecha muy lento hacia atrés.

Cuando estés cerca a la pared, pero te estés alejando de ella, gira tu
rueda izquierda muy lento hacia delante, y gira tu rueda derecha
medio rapido hacia delante.

Cuando estés muy cerca a la pared, pero te estds alejando de ella,
gira tu rueda izquierda despacito hacia atras, y gira tu rueda dere-
cha despacito hacia atrés.
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3.3. Descripcién del modelo implementado

En la biblioteca Skfuzzy, se utiliza la definicién de conjuntos difusos anteceden-
tes y consecuentes como un pipeline en el procesamiento de los valores P, D, L y
R. Este proceso asigna a cada valor de entrada el conjunto difuso al que perte-
nece, tomando el término con el valor més alto de membresia. Esta caracteristica
agrega al modelo de este trabajo una similitud con los modelos co-evolutivos del
GeNeSys, especificamente en la inferencia difusa para la generalizaciéon de los
datos.

Se ha creado un modelo de secuencias basico utilizando seq2seq con PyTorch. El
codificador consta de una capa de celdas LSTM con 64 neuronas, mientras que el
decodificador es idéntico al codificador, con la adicién de una capa de embedding
que recibe las secuencias ya tokenizadas de los términos lingiiisticos generados
por el FIS. Por dltimo, se incluye una capa densa con un nimero de neuronas
igual al tamafio del vocabulario que entrega las secuencias inferidas. La estructu-
ra final del modelo puede visualizarse en la figura 3.5.

Conjunto P

Conjunto D

TOKENIZER

Conjunto L

PAD SEQUENCES

GUUT

Conjunto R

] _ INSTRUCCION
eNcoDer EREIELREIN DECODER & VERBALIZADA

o

FIGURA 3.5. Arquitectura del modelo NLG del GeNeSys

3.4. Entrenamiento del modelo

Con los datos de entrada y las frases objetivo completas ya preprocesadas en se-
cuencias numéricas, se procede a dividir los datos en conjuntos de entrenamiento
(60 %), validacién (20 %) y pruebas (20 %) con distribucién uniforme de las 15
categorias. Los términos lingtiisticos de cada conjunto difuso se consideran ca-
racteristicas del dataset tabular y se concatenan para generar una secuencia de
entrada en el decoder, como se ilustra en la figura 3.5.

El modelo se entrena durante 150 épocas utilizando el optimizador Adam con
una tasa de aprendizaje de 0.001 y un tamafio de lote de 64. La eficiencia compu-
tacional del modelo se evaltia utilizando un equipo ASUS TUF con procesador
Ryzen 3550h sin GPU disponible y la plataforma Google Colaboratory para algu-
nos casos de uso de GPU.
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Ensayos y resultados

4.1. Software utilizado

Webots es un paquete de software profesional para simulacién de robots moévi-
les. Permite crear entornos virtuales en 3D con propiedades fisicas, como masa,
articulaciones, coeficientes de friccién, entre otros. Los usuarios pueden agregar
objetos simples o robots méviles con diferentes esquemas de locomocion (ruedas,
patas o vuelo). Ademads, se pueden equipar con sensores y actuadores, como sen-
sores de distancia, ruedas motrices, cimaras, motores, sensores tactiles, emisores
y receptores, entre otros. Los robots pueden programarse individualmente para
exhibir el comportamiento deseado.

Webots es especialmente ttil para proyectos de investigacién y educacién relacio-
nados con la robética mévil. Se ha utilizado en diversas dreas, como prototipado
de robots moviles (investigacién académica, industria automotriz, aerondutica,
industria de aspiradoras, industria de juguetes, aficionado, entre otros), inves-
tigacion en locomocién de robots (robots con patas, humanoides, cuadrapedos,
entre otros), investigaciéon en comportamiento adaptativo (algoritmos genéticos,
redes neuronales, inteligencia artificial, etc.), ensefianza de robdtica (cursos de
roboética, programaciéon en C/C++/Java/Python, etc.) y competencias de robots
[25].

4.1.1. Implementacién del modelo en webots

La implementacion (ver Figura 4.1) exhibe al robot inmerso en un entorno donde
se llevan a cabo tanto el aprendizaje como la evaluacién de su comportamiento
en la tarea concava. En la seccién detalles de la plataforma webots, se define un
arbol de nodos que engloba diversos aspectos fisicos de los robots a simular (ver
Figura 4.2a). Dentro de estos elementos, se encuentra el nodo-Robot tipo supervi-
sor que alberga un controlador Python llamado MasterConcava90-51-wPT. Este
ejecuta el método Recomendaciones (), que se encuentra en la parte del c6digo
del ambiente webots tal como se muestra en la figura 4.2b. El propésito de este
método es enviar los valores P, D, L y R al modelo NLG y generar un archivo de
extension .txt con los resultados obtenidos.
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@ DirectionalLight

® TexturedBackground

® TexturedB

@ DEF|

@ DEF SUPE
translation 1
rotation 0 100
scale 111
children
name "Master

model "

description

contactMaterial "default”
immersionProperties
boundingObject MULL
physics MULL

locked FALSE
translationStep 0.01
rotationStep 0.262

radart

e TR

(a)a) (B) b)

FIGURA 4.2. a.) Nodo supervisor y controlador. b.) Método de ac-
tivacion NLG

4.2. Pruebas unitarias

Los datos utilizados en esta seccién fueron extraidos del subconjunto de datos
con una distribucién de clases uniforme, tal como se ilustra en la figura 4.3 y que
fue previamente mencionado en la seccién 3.4. Utilizando los mismos criterios,
se generan 15 datos arbitrarios que no hicieron parte del mencionado conjunto
de datos y corresponden a un registro por categoria (ver tabla 4.1). Durante estas
pruebas unitarias, se sometieron a evaluacién todas las etapas funcionales del
modelo NLG descrito en la seccion 3.3.
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FIGURA 4.3. Distribucién de clases en datos de prueba

TABLA 4.1. Valores pruebas unitarias

P D L R CAT

-0.8970 0.7209 0.5828 -0.0657
-0.4765 09839 0.5127 0.0745
-0.0473 09302 -0.0291 0.5409
0.4314 0.7532 -0.8686 0.8373
09873 0.5057 -0.3127 -0.2746
-0.8971 -0.0014 0.7669 -0.2669
-0.4792 0.0159 0.6159 -0.1090
-0.0079  0.0239 0.2634  0.3232
0.4102 0.0126 -0.7897 0.7699 9
09635 0.0123 -0.3596 -0.1754 10
-09777 -09732 0.8963 -0.3963 11
-0.5071 -0.6878 0.8179 -0.3179 12
0.0798 -0.9896 0.5002 0.0197 13
0.4882 -0.3743 0.0412 0.3824 14
09472 -0.8104 -0.2648 -0.2296 15

RO Ul WIN -

4.2.1. Resultados por etapas del NLG

Cada uno de los valores correspondientes a las diferentes categorias fue sometido
al proceso del FIS con el objetivo de obtener los conjuntos difusos que presenta-
ron el mayor grado de pertenencia. Estos conjuntos difusos se entregan en forma
de una lista que se concatena para formar una tinica frase que no necesariamen-
te constituye una estructura coherente. Posteriormente, esta frase se transforma
en una secuencia numérica que se utilizard como entrada para el decodificador
del modelo de seq2seq. Los conjuntos difusos de cada categoria y las respectivas
secuencias se observan en la tabla 4.2.
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TABLA 4.2. Datos entregados por el FIS - Secuencias Tokenizer

Conjuntos difusos FIS

Secuencias Tokenizer

muy lejos, acercdndose, rdpidamente hacia de-
lante, muy lento hacia atrds

lejos, acercandose, medio rapido hacia delante,
muy lento hacia delante

ok, acercandose, muy lento hacia atrds, medio
rapido hacia delante

cerca, acercandose, muy rdpido hacia atras, bas-
tante rapido hacia delante

muy cerca, acercindose, despacito hacia atrés,
despacito hacia atras

muy lejos, sin cambio, bastante rapido hacia de-
lante, despacito hacia atras

lejos, sin cambio, rdpidamente hacia delante,
muy lento hacia atras

ok, sin cambio, despacito hacia delante, despa-
cito hacia delante

cerca, sin cambio, bastante rapido hacia atras,
bastante rdpido hacia delante

muy cerca, sin cambio, mds o menos rapido ha-
cia atrds, muy lento hacia atras

muy lejos, alejandose, muy rdpido hacia delan-
te, mas o menos rapido hacia atrds

lejos, alejandose, bastante rdpido hacia delante,
despacito hacia atrds

ok, alejandose, medio rdpido hacia delante,
muy lento hacia delante

cerca, alejandose, muy lento hacia delante, des-
pacito hacia delante

muy cerca, alejandose, despacito hacia atrés,
despacito hacia atras

14,27,32,4,15,14,26,4,9
27,36, 23, 4,15, 14, 26,4, 15
14,26,4,9, 36, 23, 4, 15
25,14,23,4,9,33,23,4,15
14,25,19,4,9,19,4,9

14,27, 33,23,4,15,19,4,9
27,32,4,15,14,26,4,9
19,4,15,19,4,15
25,33,23,4,9,33,23,4,15

14, 25, 24, 39, 40, 23, 4, 9, 14, 26,
4,9

14,27, 14, 23, 4, 15, 24, 39, 40, 23,
4,9

27,33,23,4,15,19,4,9

36,23, 4,15,14, 26,4, 15

25,14, 26,4,15,19,4, 15

14,25,19,4,9,19,4,9

En dltima instancia, se lleva a cabo un andlisis de las frases generadas para cada
categoria. Es importante destacar que las frases generadas, si bien carecen de los
signos de puntuacién y otras convenciones gramaticales propias del idioma espa-
fiol, arrojan resultados idénticos a los presentados en la tabla 3.7. A continuacién
se presentan las frases correspondientes a cada categoria generadas por el modelo

NLG:

1. Cuando estés muy lejos de la pared pero te estds acercando a ella gira tu
rueda izquierda rapidamente hacia delante y gira tu rueda derecha muy

lento hacia atrés.

2. Cuando estés lejos de la pared pero te estds acercando a ella gira tu rueda
izquierda medio rdpido hacia delante y gira tu rueda derecha muy lento

hacia delante.

3. Cuando estés a la distancia requerida pero te estds acercando a la pared
gira tu rueda izquierda muy lento hacia atrds y gira tu rueda derecha rapi-

damente hacia delante.
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4.

10.

11.

12.

13.

14.

15.

Cuando estés cerca a la pared y te estds acercando maés a ella gira tu rueda
izquierda muy rdpido hacia atréds y gira tu rueda derecha muy rapido hacia
delante.

Cuando estés muy cerca a la pared y te estds acercando atin mas a ella gira
tu rueda izquierda despacito hacia atrds y gira tu rueda derecha despacito
hacia atras.

Cuando estés muy lejos de la pared pero ni te alejas mas ni te acercas a
ella gira tu rueda izquierda bastante rdpido hacia delante y gira tu rueda
derecha despacito hacia atras.

Cuando estés lejos de la pared pero ni te alejas més ni te acercas a ella gira
tu rueda izquierda rdpidamente hacia delante y gira tu rueda derecha muy
lento hacia atrés.

Cuando estés a la distancia requerida y ni te alejas ni te acercas a ella gira tu
rueda izquierda despacito hacia delante y gira tu rueda derecha despacito
hacia delante.

Cuando estés cerca a la pared pero ni te acercas mds ni te alejas de ella
gira tu rueda izquierda bastante rdpido hacia atrds y gira tu rueda derecha
bastante rdpido hacia delante.

Cuando estés muy cerca a la pared pero ni te acercas maés ni te alejas de
ella gira tu rueda izquierda despacito hacia atrds y gira tu rueda derecha
despacito hacia atrés.

Cuando estés muy lejos de la pared y te estds alejando aun mas de ella gira
tu rueda izquierda muy rdpido hacia delante y gira tu rueda derecha més o
menos rapido hacia atras.

Cuando estés lejos de la pared y hacia estds alejando mas y ella gira tu rue-
da izquierda bastante lejos hacia delante y gira tu rueda derecha despacito
hacia atras.

Cuando estés a la distancia requerida pero te estés alejando de la pared gira
tu rueda izquierda rapidamente hacia delante y gira tu rueda derecha muy
lento hacia atrés.

Cuando estés cerca a la pared pero te estas alejando de ella gira tu rueda
izquierda muy lento hacia delante y gira tu rueda derecha medio rapido
hacia delante.

Cuando estés muy cerca a la pared pero te estds alejando de ella gira tu rue-
da izquierda despacito hacia atrds y gira tu rueda derecha despacito hacia
atras.

4.2.2. Errores en las secuencias generadas en el dataset de test

El conjunto de pruebas utilizado se compone de 2000 ejemplos que fueron so-
metidos al modelo para la generacion de secuencias. A través del andlisis de las
frases generadas, se detectaron errores que afectaron tanto a palabras individua-
les como a la estructura general de las secuencias. En particular, se identificé un
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total de 11 secuencias con errores, distribuidas de la siguiente manera: 7 secuen-
cias pertenecen a la categoria 12, 3 secuencias corresponden a la categorfa 9 y 1
secuencia a la categoria 8.

De las 7 secuencias pertenecientes a la categoria 12 que presentaron errores, se
observ6 que 5 de ellas mostraron una mayor probabilidad de encontrar el token
“lejos” en lugar del correspondiente “lento”. Ambas palabras comparten la ca-
racteristica de representar una condicién o estado opuesto a la rapidez, ya sea en
términos de distancia o movimiento. Sin embargo, esta variacién en la elecciéon
del token genera confusion al definir la instruccién relacionada con el movimien-
to de la rueda correspondiente. En las dos secuencias restantes, se agregaron los
tokens “pero” y “lento”, que resultaron en frases confusas o redundantes. En la
tabla 4.3 se pueden apreciar las palabras incorrectas o afiadidas, resaltadas en co-
lor rojo. Por otro lado, en las frases pertenecientes a la categoria 9, se observa
una irregularidad en la instruccion para girar la rueda derecha. Finalmente, la
Unica frase de la categorfa 8 no especifica de manera concreta el componente de
acercamiento a la pared.

TABLA 4.3. Secuencias erréneas

CAT Secuencias

12 cuando estés lejos de la pared y te estds alejando mas de ella gira tu

rueda izquierda bastante lejos hacia delante y gira tu rueda derecha
despacito hacia atras
12 cuando estés lejos de la pared pero te estds alejando mds de ella gira tu
rueda izquierda tu rdpido hacia delante y gira tu rueda derecha
despacito hacia atrds lento

8 cuando estés a la distancia requerida y ni te acercas ni te rapidamente

a ella gira tu rueda izquierda despacito hacia delante y gira tu rueda
derecha despacito hacia delante
9 cuando estés cerca a la pared pero ni te acercas mads ni te alejas de ella
gira tu rueda izquierda bastante rdpido hacia atrds y gira tu hacia
derecha bastante rapido hacia delante

4.3. Certificacion en individuo

Se selecciona aleatoriamente un individuo de la sociedad de robots que ya tenga
el conocimiento necesario para llevar a cabo la tarea de seguimiento de pared, in-
dependientemente de los parametros de sus sistemas conexionistas. Segtn [5], la
comunicacién entre los individuos se realiza mediante archivos planos que con-
tienen instrucciones numéricas P, D, L, R; estas instrucciones son depositadas por
el robot instructor en un directorio especifico, donde es leido por el robot apren-
diz para iniciar su proceso de aprendizaje. La Figura 4.4 muestra un fragmento
del archivo plano generado por el robot instructor que utiliza para certificar el
modelo NLG.
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FIGURA 4.4. Archivo plano de robot instructor

4.3.1. Distribucion de los datos del instructor

El instructor genera 47 registros cuyos valores, a diferencia de los datos genera-
dos en este trabajo, no tienen estrictamente grados de pertenencia mayores a 0,8.
Por lo tanto, como se observa en la figura 4.5, su distribucion es significativamen-
te diferente, pues contiene datos que no pertenecen a ninguna de las categorias
visualizadas en la figura 3.4 y solo una minoria de ellos estan clasificados en las
categorias 8 y 9.

4.3.2. Resultados con los datos del instructor

Es importante destacar que una considerable cantidad de datos generados por el
robot instructor no presenta las mismas caracteristicas que los datos utilizados
para entrenar el modelo NLG. Como resultado, muchas de las secuencias genera-
das carecen de coherencia y se alejan significativamente de la estructura canénica
observada con respecto a las frases de la tabla 3.7. Sin embargo, a pesar de es-
ta variabilidad de los valores de entrada, se pueden identificar subconjuntos de
secuencias que mantienen una coherencia interna y siguen la estructura deseada.

En el andlisis de los registros generados por el robot instructor, se identificaron
un total de 32 secuencias diferentes. De los 48 registros totales, se encontré que
9 de ellos cumplieron con los criterios establecidos y pertenecieron a la categoria
14, mientras que otras 2 secuencias se clasificaron en la categoria 8. Sin embargo,
la mayoria de las frases restantes carecian de coherencia y presentaron errores en
varios niveles, como la repeticién de palabras, la inclusién de términos incorrec-
tos o una estructura gramatical completamente incomprensible. Estos resultados
destacan la variabilidad en la calidad y precision de las secuencias generadas por
el modelo NLG en relacién con las expectativas establecidas.
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A continuacién se enumeran algunas de las secuencias erréneas generadas desde
los datos del instructor. Alli se evidencian las falencias del uso del FIS Mamdani
con respecto al ANFIS del robot del GeNeSys:

1.

0.

-0.

0.

-0.

0.

-0

cuando estés muy a a la pared te estds te acercando rapido estds gira ella de
izquierda gira tu rueda y despacito hacia atras y gira tu rueda muy de hacia

cuando estés a a requerida medio y ni te acercando a te distancia a ella
gira tu muy izquierda derecha la estéds rueda gira tu derecha rapidamente
despacito rueda

cuando cuando derecha mas a ella delante despacito estés pero lejos ni estas
a acercando rueda tu gira hacia de hacia de tu la izquierda gira hacia hacia
derecha de

atrds cuando acercando lejos la a y te estds pero lejos rdpido estds tu tu
rueda izquierda tu rueda hacia estds y gira tu gira tu rueda hacia ni

. atras cuando lejos rdpido la a pared te estds pero rapidamente rdpido estés
tu rueda ella estés alejando hacia te atn y tu rueda derecha de acercando
hacia estas
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FIGURA 4.5. Distribucion de datos del robot instructor
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4.4. Meétricas

En el marco de este trabajo, se utilizan métricas fundamentales para evaluar el de-
sempefio del modelo de generacién de lenguaje natural. La exactitud (accuracy) y
la pérdida (loss) proporcionan una visién cuantitativa de la calidad de las predic-
ciones y la capacidad de ajuste del modelo a los datos. Dado que las frases siguen
una estructura candnica en todas sus categorias y la cantidad de datos estd ba-
lanceada, se evaluaran las clasificaciones del vocabulario utilizando las métricas
mencionadas anteriormente.

4.4.1. Exactitud y pérdida en entrenamiento, validacién y pruebas

La métrica de exactitud, o accuracy, es una medida comtinmente utilizada en pro-
blemas de clasificacién para determinar la proporcién de predicciones correctas
respecto al total de predicciones realizadas [26]. En el caso del modelo NLG de-
sarrollado, esta métrica se aplica para evaluar la precisién en la generaciéon de
secuencias numéricas, comparando las secuencias generadas con las secuencias
de referencia.

Por otro lado, la métrica de pérdida, o loss, es una medida que indica la diferencia
entre el valor predicho por el modelo y el valor real. El objetivo es minimizar esta
pérdida, ya que un valor menor indica un mejor ajuste del modelo a los datos de
entrenamiento [27].

De acuerdo al nimero de épocas de entrenamiento mencionado en la secciéon
3.4, se visualiza el comportamiento de accuracy y loss en la figura 4.6 donde se
incluyen también resultados en el conjunto de datos de validacién. Finalmente,
en la tabla 4.4 se visualizan las métricas obtenidas a partir del conjunto de datos
de entrenamiento, validacién y pruebas generados por el FIS.

TABLA 4.4. Métricas de entrenamiento y pruebas

ETAPA Loss Accuracy (%)
Entrenamiento/Validacién 0.1039/0.1067 99,77
Pruebas 0.1027 99,87

4.5. Comparacién con investigaciones relacionadas

Al comparar diferentes enfoques, es importante tener en cuenta varios aspectos
que se derivan de los objetivos planteados en este trabajo. El modelo de gene-
raciéon de lenguaje natural desarrollado en este estudio presenta caracteristicas
distintivas en comparacién con los trabajos mencionados en la seccién 1.4. En
primer lugar, no requiere un preprocesamiento extenso de los datos. A diferencia
de los enfoques anteriores, el modelo NLG utilizado en este estudio permite utili-
zar los datos obtenidos del FIS directamente, sin necesidad de preprocesamiento,
tanto para el ingreso al modelo seq2seq como durante su implementaciéon. Ade-
mas, los datos obtenidos del ANFIS se entregaron al modelo en el mismo rango
que los datos del FIS. Esto contrasta con los modelos del estado del arte, don-
de se requiere la creacién de estructuras de entidades, grafos l6gicos o modelos
pre-operativos antes de generar las secuencias correspondientes. Sin embargo, es
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importante destacar que las secuencias generadas en este trabajo siguen un pa-
tron gramatical més limitado en comparacién con los resiimenes y descripciones
generados por otros enfoques.

En general, los demds trabajos en este campo incorporan conocimiento experto
tanto en la extraccién de los datos de entrada como en su preprocesamiento. Por
ejemplo, el modelo mencionado en la secciéon 1.4.1 utiliza un esquema de grafo
l6gico que implica la toma de decisiones disefiadas por expertos en sistemas de
fraude. Este enfoque guarda similitud con el FIS, donde el disefio de conjuntos
difusos puede considerarse como conocimiento experto que contribuye a maxi-
mizar la probabilidad de las secuencias en el decodificador del modelo de gene-
racion de lenguaje natural.
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FIGURA 4.6. a) Loss en entrenamiento y validacién. b) Accuracy en
entrenamiento.
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En cuanto a la complejidad del modelo neuronal empleado, en NLG para el Ge-
NeSys es bastante inferior, no utiliza capas de atencién o transformers. Por ende
su eficiencia computacional en entrenamiento e inferencia ayuda a que el proceso
de transmisiéon de conocimiento no sea fuertemente impactado en la interaccién
de los individuos GeNeSys.

4.6. Impacto del ANFIS en el modelo NLG

El ANFIS, como el sistema generalizador del GeNeSys, recibe instrucciones de
otro robot para iniciar su interaccién con el entorno, donde se entrenan sus para-
metros antecedentes y consecuentes [5]. En la figura 4.7, se pueden visualizar los
conjuntos difusos P y D que corresponden al robot instructor.

Por otro lado, el robot aprendiz, en su proceso de aprendizaje, interacttia con
el entorno tratando de asimilar las recomendaciones del robot instructor. Dicho
aprendizaje es independiente de la topologia de los ANFIS, pues pueden ser dife-
rentes en cada robot, y por esto la cantidad y distribucién de los conjuntos difusos
en el robot aprendiz es muy diferente, como se muestra en la figura 4.8.

Conjuntos difusos para la Entrada P Conjuntos difusos para la Entrada P

Conjuntos difusos para la Entrada D Conjuntos difusos para la Entrada D

FIGURA 4.7. Conocimiento ANFIS instructor
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FIGURA 4.8. Conocimiento ANFIS aprendiz

El cambio evidente en los conjuntos difusos de cada individuo confirma la pro-
piedad adaptativa del ANFIS, que provoca cambios significativos que trascien-
den el contexto del FIS implementado. En consecuencia, la generacién de frases
correctas en el modelo NLG dependera de si los datos se ajustan a las distribucio-
nes implementadas en el FIS Mamdani. De lo contrario, como ocurrié en la gran
mayoria de los registros, las secuencias serdn incomprensibles.
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Conclusiones

A continuacién se presentan las conclusiones obtenidas en la implementacién del
NLG de la investigacion realizada ademds de listar ciertos trabajos futuros que
podrén nacer producto de los resultados.

5.1. Conclusiones generales

Este trabajo ha permitido la combinacién de légica difusa con un sistema de
aprendizaje profundo para generar secuencias que representan potenciales ins-
trucciones verbales para un robot que desea ensefiarle su comportamiento a otro.
Si bien la mayoria de las secuencias generadas con el FIS fueron correctas, la pro-
piedad adaptativa del ANFIS introdujo diferencias significativas en la distribu-
cién del conocimiento para la tarea de seguimiento de pared, derivando en la
generacion de secuencias incomprensibles. Por lo tanto, es importante conside-
rar que el modelo de aprendizaje profundo utilizado deberia tener propiedades
adaptativas que le permitan ajustarse a la diversidad de comportamientos de los
sistemas conexionistas presentes en el GeNeSys.

Al parecer, la incongruencia en las frases generadas con datos del ANFIS podria
ser causada parcialmente por la falta de ejemplos en muchas combinaciones de
P, D, L y R que cumplen el criterio de grados de pertenencia mayor a 0.8. Este
principio se considerd necesario ya que de lo contrario las respuestas implicarian
la combinaciéon de reglas difusas del FIS Mamdani, es decir, acarrearia el com-
portamiento del controlador original. Por lo tanto, el comportamiento del ANFIS
se veria totalmente suprimido en la interaccién con el modelo para la genera-
ciéon de expresiones lingtiisticas. Sin embargo, esta falta de ejemplos en ciertas
combinaciones de P, D, L y R afecta la capacidad del modelo para generar frases
coherentes.

Relacionar ntimeros decimales con texto ha sido un desafio considerable. Las
combinaciones de texto y niimeros generalmente se han realizado en el contexto
de entrada entera y salida vectorial utilizando capas de embedding. Sin embargo,
mediante el uso del FIS y los términos lingiiisticos, se logré establecer una rela-
cién aproximada que ayudo en la generacion de estas secuencias. Es importante
destacar que en el contexto del ANFIS, estos términos lingtiisticos son imprede-
cibles.

Por otra parte, la simplicidad del modelo fue efectiva para los tiempos de entrena-
miento y las pruebas unitarias. No obstante, si hay un tiempo agregado de varios
segundos al inicio de la simulacién que para el GeNeSys, con muchos individuos
y varios ANFIS en cada uno, podria incrementar el tiempo de procesamiento.
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5.2. Préximos pasos

Mencionados previamente, se identificaron varios aspectos que pueden ser objeto
de mejora en trabajos futuros:

» Desarrollar un modelo de aprendizaje profundo especializado en NLG que
tenga propiedades adaptativas que sea capaz de verbalizar los comporta-
mientos particulares de los ANFIS.

= Desarrollar un modelo de comprension de lenguaje natural (NLU, por sus
siglas en inglés, Natural Language Understanding) que a partir de los patrones
lingiiisticos utilizados en NLG, pueda generar valores P, D, L y R, es decir,
un proceso inverso al abordado en este trabajo. Con el fin que los robots
aprendices tengan a su disposicién los valores numéricos necesarios para el
aprendizaje cultural.

= Recopilar muestras de un mayor nimero de individuos del sistema Ge-
NeSys, lo que permitiria identificar patrones que faciliten la generacién de
lenguaje natural en el proceso de aprendizaje.
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