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I

Resumen

La presente memoria describe el diseño e implementación de un generador de
lenguaje natural que permite a un robot instructor transformar un conjunto de
valores numéricos en expresiones lingüísticas relacionadas con la actividad de
seguimiento de pared, con el objetivo de facilitar un proceso de enseñanza más

natural en la sociedad de robots del sistema de co-evolución genética y
neuro-memética (GeNeSys).

Para lograr este propósito, se generó un conjunto de datos utilizando un sistema
de inferencia difusa. Además, se consideraron categorías como

preprocesamiento de texto, redes neuronales recurrentes y modelos de
aprendizaje profundo modernos.
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Capítulo 1

Introducción general

En este capítulo, se detallan los conceptos básicos de la generación de texto a par-
tir de datos, comúnmente conocida como D2T (Data2Text) y la lógica difusa, que
constituyen la base teórica de este trabajo. Además, se referencian investigaciones
efectuadas por otros autores que han realizado tareas que se pueden considerar
similares. También se describe el objetivo y las actividades que delimitan el alcan-
ce del modelo propuesto de generación de lenguaje.

1.1. Concepto datos a texto

La generación de texto a partir de datos es un campo de investigación en el que
se busca producir expresiones lingüísticas que describan adecuada y fluidamente
entradas no lingüísticas como tablas de bases de datos, artículos o simulaciones
de sistemas físicos [1].

Existen diferentes enfoques principales para generar texto a partir de datos, entre
ellos se encuentran el uso de reglas, plantillas y redes neuronales. Los métodos
basados en reglas y plantillas son ampliamente utilizados en diversas aplicacio-
nes debido a su capacidad para brindar un control e interpretación claros de los
datos, lo que ayuda a garantizar la precisión del texto generado. Si bien estos
métodos requieren un trabajo manual intenso para definir características y lograr
una alta calidad en las reglas y plantillas, en ocasiones son necesarios para obte-
ner resultados precisos y efectivos.

Los modelos basados en redes neuronales se fundamentan principalmente en da-
tos y requieren menos intervención humana. Estos modelos pueden generar fá-
cilmente textos descriptivos y fluidos, pero resulta más desafiante garantizar que
los textos generados sean fieles a los datos de entrada [2].

1.2. Lógica difusa

En 1965, Lotfi A. Zadeh introdujo la lógica difusa definida como una forma de ló-
gica multivaluada que permite definir valores intermedios entre las evaluaciones
tradicionales, como verdadero/falso, sí/no, alto/bajo, etc. Esto facilita la aplica-
ción de un enfoque más natural e intuitivo en la programación de computadoras
al permitir la formulación matemática y el procesamiento de terminología ambi-
güa, tal como “bastante alto” o “muy rápido” [3].
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Considerando un conglomerado de elementos discretos o continuos, un conjunto
difuso es una función que define matemáticamente el grado con el que cada ele-
mento pertenece a cierta categoría [4]. Así, cada elemento es clasificado mediante
un valor comprendido entre 0 y 1. Estos conjuntos difusos formalizan numérica-
mente la ambigüedad inherente en dicha clasificación, ampliando así la noción
de inclusión y permitiendo operaciones tales como la unión, intersección y com-
plemento entre clases de elementos.

FIGURA 1.1. Ejemplo de conjuntos difusos de 2 características 1.

1.3. Planteamiento y oportunidad del problema

Implementado por [5], el sistema de co-evolución genética y neuro-memética (Ge-
NeSys) consiste en una sociedad de robots capaces de desarrollar y propagar cul-
turalmente cierto comportamiento, mediante la interacción social entre “instruc-
tores” e “imitadores”, usando un modelo computacional de replicación neuro-
memética que fue validado mediante sistemas conexionistas tales como el mapa
auto-organizado (SOM, del inglés, Self-Organizing Maps) y la red adaptativa de
inferencia difusa (ANFIS, del inglés, Adaptive-Network based Fuzzy Inference Sys-
tem).

En el respectivo proceso cultural de enseñanza-aprendizaje, cada robot entrega
valores numéricos que, por un lado, representan el comportamiento que es exhi-
bido por algún robot, y por otro lado, representan la información que este puede
compartir con otros robots. La vinculación de un generador de lenguaje natural
(NLG, del ingles Natural Language Generation) al sistema GeNeSys busca satisfa-
cer una necesidad previamente identificada por el líder del proyecto, en cuanto
a incrementar la naturalidad en la interacción entre los individuos bio-culturales,
allí denominados: GeNeBots. Eventualmente, esta propuesta investigativa puede
servir de base para que en diversos ámbitos empresariales puedan desarrollarse
modelos que interpreten lingüísticamente datos numéricos, expresándose en la
terminología propia del contexto en donde se pretenda aplicar, ya sea bancario,
médico, de manufactura, u otros.

1Imagen tomada de [3]
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1.4. Estado del arte

La generación de texto a partir de datos es un campo en constante evolución y
desarrollo. En este existen diversas herramientas y técnicas disponibles para ge-
nerar texto automáticamente desde datos estructurados o no estructurados, así
como herramientas en línea que utilizan inteligencia artificial y algoritmos com-
plejos basados en reglas. Algunas utilizan técnicas avanzadas de procesamiento
del lenguaje natural donde la calidad del texto generado depende en gran medi-
da de la calidad y cantidad de datos disponibles; así como de la capacidad de la
herramienta para analizar y comprender los datos. En esta sección se describirán
algunas investigaciones previas que han servido de guía para la elaboración de
este trabajo.

1.4.1. Generación neuronal consciente de la lógica

Esta investigación presenta un método que se enfoca en detectar posibles riesgos
en los datos de entrada y explicar en lenguaje natural comportamientos anorma-
les correspondientes al lavado de dinero. El enfoque propuesto, llamado genera-
ción neuronal consciente de la lógica (LANG, del inglés Logic Aware Neural Gene-
ration), combina la modelización lógica con la generación de texto. Para lograrlo,
se utilizan reglas expertas que se convierten en un grafo lógico, y un codificador
basado en metapaths que aprovecha el conocimiento especializado [6]. Además,
se emplea un módulo recuperador basado en capas de atención para vincular los
datos numéricos de entrada con el texto objetivo y una estrategia de pérdida ba-
sada en las reglas mencionadas que mejora la precisión en la generación de texto
(ver figura 1.2)

FIGURA 1.2. Arquitectura de LANG 2.

2imagen tomada de [6]
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1.4.2. Índice de calidad del aire

En este estudio, se presenta un enfoque basado en inteligencia computacional
y generación de lenguaje natural para la elaboración automática de resúmenes
a partir de series de datos numéricos. El objetivo es proporcionar información
relevante oculta en los datos y facilitar la comprensión a los usuarios utilizando
lo que los autores denominan ontología temporal difusa. El objetivo es realizar
una evaluación exhaustiva utilizando datos reales del índice de calidad del aire
(ICA) [7].

El proyecto utiliza 38 reglas difusas en forma trapezoidal que componen el diseño
gramatical del resumen ICA, y ha recibido calificaciones satisfactorias por parte
de los expertos. Actualmente el modelo se encuentra en funcionamiento en la
web oficial de MeteoGalicia [7].

1.4.3. Desafío en la generación de texto a partir de datos

Challenge in Data-2-text Generation es un trabajo que plantea una tarea más de-
safiante de generación de texto a partir de datos y se presenta un nuevo corpus
a gran escala que contiene registros de datos emparejados con documentos des-
criptivos. Los experimentos muestran que dichos modelos generan texto de for-
ma fluida, pero no logran aproximarse de manera convincente a la calidad de los
documentos generados por humanos [8].

El modelo base utilizado realiza un embedding de algunas características princi-
pales de forma individual insertándolas en un perceptrón multicapa (MLP, del
inglés Multi-Layer Perceptron) de una capa oculta para pasar a un modelo neuro-
nal recurrente tipo LSTM, del inglés Long-Short Term Memory.

1.4.4. Operaciones guiadas por modelos neuronales secuencia a secuen-
cia seq2seq

Esta propuesta denominada OpAtt (abreviatura del inglés Operation guided Atten-
tion based sequence to sequence network) consiste en utilizar información de opera-
ciones pre-ejecutadas en los datos de entrada para guiar la generación de texto. El
modelo propuesto consta de un codificador de registros, un codificador de opera-
ciones y un codificador de resultados de operaciones, junto con un decodificador
de unidad recurrente con compuertas (GRU, del inglés Gated Recurrent Unit) equi-
pado con atención y un mecanismo de compuerta (ver figura 1.3). Los resultados
pre-ejecutados obtenidos de las operaciones actúan como hechos inferidos para
guiar la generación y se utiliza una capa de cuantización para establecer corres-
pondencias entre resultados numéricos y elecciones léxicas [9].
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FIGURA 1.3. Pre-ejecución de datos y arquitectura de OpAtt 3.

1.4.5. Selección de contenido, macroplanificación y planificación se-
cuencial variacional

Las investigaciones lideradas por Ratish Puduppully se centran en el enfoque
D2T utilizando conjuntos de datos deportivos y métodos de extracción de infor-
mación para ser incorporados en el modelo base mencionado en la sección 1.4.3.
A continuación, se describen brevemente estos trabajos y los cambios que se han
realizado entre ellos [10] [1].

Selección de contenido y planeación: una capa adicional denominada con-
tent select gate tiene la finalidad de calcular puntuaciones para cada entrada
en relación con los demás datos del conjunto tabular como se evidencia en
la figura 1.4 a. Estas puntuaciones se someten a una función sigmoide y se
realiza una operación de producto punto con los valores de entrada y así
genera una matriz que representa el selector de contenido [10]. Esta mejora
en el modelo base permite resaltar la relevancia de ciertos datos durante el
proceso de generación de texto para llegar a la etapa de decodificación del
texto (ver figura 1.4 b).

(a) (b)

FIGURA 1.4. a) Esquema de selector de contenido. b) Flujo de pro-
cesamiento del modelo 4.

3Imagen tomada de [9]
4Imagen tomada de [10]
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Macroplanificación: es una ampliación del modelo de selección de conteni-
do y planificación que involucra un preprocesamiento de datos a un nivel
más alto. En este contexto, se define un macro plan como una secuencia
estructural de párrafos que se separan mediante el uso de una etiqueta o
marcador de discurso <P>. Cada plan de párrafo describe una secuencia de
entidades y eventos que se refieren a jugadores individuales o equipos y su
desempeño en un juego de béisbol. Las entidades y eventos se verbalizan
en una secuencia de texto utilizando tokens especiales para indicar el tipo y
valor de cada registro en la tabla de datos.

Planificación secuencial variacional: el enfoque utiliza técnicas de inferencia
variacional para modelar la distribución latente de los macroplanes en la
generación de texto a partir de datos estructurados. El modelo consiste en
un codificador que mapea los datos de entrada a una distribución latente
y un decodificador que genera los macroplanes. Durante el entrenamiento,
se maximiza la evidencia inferior para capturar la incertidumbre inherente
en la generación de planes secuenciales [1]. Esto permite al modelo generar
macroplanes de alta calidad y capturar la coherencia y estructura del texto
final.

1.4.6. Tabla comparativa de modelos D2T

La comparativa realizada de los modelos se hace en referencia a la aplica-
bilidad al modelo NLG del sistema GeneSys; el nivel de aplicabilidad se
define con base al nivel de preprocesamiento de datos y complejidad del
modelo, motivos por los que puede ser ineficiente computacionalmente en
un eventual despliegue.

TABLA 1.1. Comparación de modelos en generación de texto.

Modelo Preprocesado Complejidad Aplicabilidad

LANG Media Alta Media
Ontología temporal difusa Media Media Media
Operaciones guiadas OpAtt Alto Alta Media
Selección de contenido Muy Alto Media Limitada
Macroplanificación Muy Alto Media Limitada
Planificación secuencial variacional Muy alto Alta Limitada

1.5. Motivación

La literatura existente revela que los modelos actuales para esta tarea son comple-
jos y requieren un extenso preprocesamiento de datos, esto limita su aplicabilidad
en situaciones prácticas. La motivación detrás de este proyecto es desarrollar un
enfoque más sencillo y efectivo que permita generar instrucciones lingüísticas en
el proceso de enseñanza-aprendizaje del proyecto GeNeSys, con la intención de
lograr un modelo sencillo que facilite la generación de texto en diversos contex-
tos. Así, este trabajo pretende simplificar el proceso D2T y obtener resultados de
calidad sin la necesidad de técnicas complejas de preprocesamiento.
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1.6. Objetivos y alcance

Considerando los 4 valores numéricos (P, D, L, R) que definen el comportamiento
de los robots en el sistema GeNeSys, el objetivo de este proyecto es desarrollar
un modelo generador de lenguaje natural, que sea capaz de producir expresiones
lingüísticas basadas en dichos valores. Esto le permitiría a un robot “instructor”
verbalizar su propio comportamiento, con el fin de recomendárselo a otros robots.
Para lograr lo propuesto se plantean los siguientes objetivos específicos:

Obtener una base de datos, a partir de un sistema de inferencia difusa (FIS,
del inglés Fuzzy Inference System), que sea útil para entrenar el modelo pro-
puesto.

Realizar un preprocesamiento de datos corto que permita al modelo un en-
trenamiento rápido y una generación de secuencias que sean computacio-
nalmente eficientes.

Implementar el modelo propuesto en ambiente de simulación del sistema
GeNeSys.

Evidenciar las secuencias generadas con datos de prueba provenientes del
FIS y los generados de los sistemas conexionistas del GeNeSys.
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Capítulo 2

Introducción específica

En este capítulo se detallan algunos de los conceptos fundamentales en el uso de
lenguaje natural, por parte de los sistemas de inferencia difusa y en la genera-
ción de lenguaje natural (NLG) por parte de las redes neuronales recurrentes. Así
mismo, se detallan algunos aspectos del sistema GeNeSys que son claves para la
generación de las variables de entrada.

2.1. Sistema de inferencia difusa tipo Mamdani

Propuesto en 1975 por Ebrahim Mamdani, es probablemente el método más uti-
lizado como mecanismo de inferencia difusa [11]. Es un enfoque utilizado para la
construcción de sistemas de control difuso que se fundamenta en reglas difusas
si-entonces (IF-THEN) y utiliza el concepto de conjuntos difusos mencionados en
la sección 1.2 para representar la incertidumbre y la imprecisión en los datos de
entrada y salida.

El FIS Mamdani es práctico y eficiente para definir términos lingüísticos y conjun-
tos difusos. por lo tanto, permite generar un conjunto de datos que se aproxime
a las características de los sistemas conexionistas de los robots del GeNeSys, que
dependen de la lógica difusa (ver sección 2.2.1). Para lograr esto, el FIS Mamdani
sigue una serie de pasos: fuzzyficación, activación de reglas difusas y defuzzyfi-
cación. A continuación, se describen estos pasos.

2.1.1. Fuzzyficación

En esta fase, se calcula el grado de pertenencia de esas variables a todos los con-
juntos difusos posibles [12]. En la figura 2.1 se puede observar el valor de mem-
bresía para dos conjuntos difusos denominados “baja” y “media” para un deter-
minado valor de temperatura.
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FIGURA 2.1. Función de membresía temperatura baja y media pa-
ra 10 °C1.

Para definir un conjunto difuso triangular, se establecen los límites a (límite in-
ferior), b (límite superior) y m (punta del triángulo). El valor de pertenencia se
calcula de acuerdo con la ecuación 2.1.

µ(x) =


0 si x ≤ a
x−a
m−a si a < x ≤ m
b−x
b−m si m < x < b

0 si x ≥ b

(2.1)

2.1.2. Activación de las reglas difusas

Los modelos difusos de Mamdani no necesitan modelos matemáticos del sistema
a controlar y se obtienen a partir de reglas difusas o enunciados condicionales di-
fusos. Por ejemplo, si el error de presión es negativo y grande, entonces el cambio
de calor es positivo y grande [13], donde el término “error” se refiere a la diferen-
cia entre el valor real de la variable y el punto de referencia (setpoint). En general,
las reglas de tipo Mamdani tienen la siguiente forma:

Ri : ifXisAi, XisAi, ..., XisAithenY isBi. (2.2)

Aquí es donde se deben realizar las operaciones con los conjuntos difusos pre-
determinados. Existe una generalización de las funciones que definen la unión
y la intersección de conjuntos difusos, conocidas como conorma triangular (T-
Conorma) y norma triangular (T-Norma). En la mayoría de las aplicaciones de
ingeniería basadas en lógica difusa, se opta por utilizar el operador máximo co-
mo T-Conorma y el operador mínimo como T-Norma [14], el último utilizado en
los propósitos del FIS de este trabajo. La intersección de dos conjuntos difusos A
y B es un conjunto difuso A ∩ B en U con función de pertenencia definida en la
ecuación 2.3.

1Elaboración propia basada en [12]
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µA∩B(x) = mı́n[µA(x),µB(x)] (2.3)

2.1.3. Defuzzyficación

Es el proceso de tomar las salidas difusas y convertirlas en un valor de salida
único o nítido. Este proceso puede ser realizado por cualquiera de varios métodos
de defuzzificación [15]. En esta investigación se utilizó el método de centroide
calculado con la ecuación 2.4

Centroide =
∑n

i=1(Yi × µi)∑n
i=1 µi

(2.4)

2.2. Sistema GeNeSys

El sistema de co-evolución genética y neuro-memética (GeNeSys) es un modelo
computacional de la emergencia y propagación cultural de cierto comportamien-
to, en una sociedad de robots. Allí cada robot, como individuo autónomo, está do-
tado con sistemas conexionistas muy sencillos capaces de aprendizaje autónomo
y social, cuya topología es heredada mediante mecanismos genéticos. Con dichos
sistemas, cada robot puede descubrir por sí mismo patrones comportamentales
útiles, o bien “imitar” a otros individuos que ya tengan el conocimiento. En el
escenario “imitativo”, es en donde se utiliza la replicación neuro-memética co-
mo mecanismo de herencia cultural [16] y por el efecto Baldwin, los individuos
con mejores comportamientos adquiridos y mejor habilidad para “enseñarlos”
son los más atractivos en la reproducción sexual. En términos de robótica evolu-
tiva, dicha sociedad modela la herencia dual de genes y neuro-memes [16] para
explorar y explotar controladores adaptativos; su objetivo es seguir explorando
y explotando estos controladores hasta que uno de los individuos logre realizar
exitosamente una tarea específica y demuestre su eficacia también en tareas cola-
borativas.

En contraste con otros modelos sociales y evolutivos, el GeNeSys es un sistema
multi-agente completamente descentralizado y se enfoca en el desarrollo cultural
mediante replicadores que no viajan entre sus huéspedes, razón por la que deben
transmitir su información mediante señales sociales, exclusivamente.

2.2.1. Sistema de inferencia difusa basada en red adaptativa

La red ANFIS es un sistema de inferencia difusa que posee la capacidad de apren-
der a relacionar las entradas y salidas a través del aprendizaje supervisado. A
diferencia de una red neuronal convencional, ANFIS es una red adaptativa en
la que no existen pesos de conexión, así los parámetros que se aprenden están
asociados a nodos específicos.

En la capa 1 de ANFIS, se lleva a cabo un proceso de fuzzyficación similar al
mencionado en la sección 2.1.1 para capturar la incertidumbre y la imprecisión
asociadas a los datos. En la capa 2 se estimulan las reglas difusas con AND difusa,
en la capa 3 se realiza la normalización de los datos y por último en la capa 4, se
emplea una decisión inferencial tipo Sugeno. En la figura 2.2 se puede identificar
la arquitectura del ANFIS del GeNeSys.
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FIGURA 2.2. ANFIS del sistema GeNeSys 2.

2.2.2. Mapa auto organizado

Se define un modelo que busca representar un espacio multidimensional de en-
trada en un espacio de salida de menor dimensión. La capa de entrada recoge
y canaliza la información, mientras que la capa de procesamiento realiza una
proyección conservando las características esenciales de los datos mediante una
relación de vecindad entre las neuronas [17]. Al final, se obtiene un mapa auto-
organizado que muestra agrupaciones en el espacio de salida, lo que facilita la
visualización y comprensión de patrones y relaciones entre los datos.

2.3. Variables de entrada

Los datos clusterizados del SOM son aquellos P, D, L y R seleccionados para ser
compartidos por el potencial robot instructor en el proceso de enseñanza. A con-
tinuación se realiza una breve descripción de cada uno de los valores.

1. Proporcional (P): los robots del GeNeSys están dotados con sensores de dis-
tancia que se ponderan de manera que el robot tenga una sensibilidad basa-
da en lóbulos gaussianos [5]. Además, el robot está equipado con sensibili-
dad al choque contra la pared, que en conjunto resulta en valores continuos
dentro del rango de -1 a 1 y forma parte del universo de discurso para esta
variable, donde -1 representa la posición ponderada más alejada de la pared
y 1 representa la posición más cercana a la pared.

2. Derivativo (D): esta variable representa la pendiente resultante de la dife-
rencia entre el valor P de la muestra sensorial actual y el valor P de la mues-
tra inmediatamente anterior. También se encuentra en un rango de -1 a 1,
siendo -1 una relación de cambio no pronunciada hacia la pared y 1 una di-
ferencia muy pronunciada que es una aceleración máxima de acercamiento
a la pared.

3. Motores izquierdo y derecho (L, R): son los valores que representan la velo-
cidad angular de los motores. Al igual que los anteriores valores, se encuen-
tran en un rango continuo de -1 a 1, resultantes de la decisión del ANFIS y
la clusterización del SOM.

2Imagen tomada de [5]
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2.4. Arquitecturas con redes neuronales recurrentes

En esta sección, se detallan dos arquitecturas clave en el campo de la generación
D2T: LSTM presentada por primera vez en [18] y unidad recurrente de compuer-
tas (GRU) igualmente presentada en [19]. Estas arquitecturas, basadas en redes
neuronales recurrentes (RNN, del inglés Recurrent Neural Network), han demos-
trado su eficacia en la generación de secuencias de texto coherentes y relevantes.
Además, se examinará cómo estas arquitecturas forman parte del famoso mode-
lo Seq2Seq (sequence-to-sequence), utilizado ampliamente en tareas de traducción
automática y generación de texto.

2.4.1. Celdas de memoria de largo y corto plazo

Según [18], una LSTM es una arquitectura de RNN diseñada para superar el pro-
blema del gradiente desvaneciente y capturar dependencias a largo plazo en se-
cuencias de datos.

Como se ilustra en la figura 2.3, en una LSTM se introducen unidades de me-
moria especializadas llamadas “celdas de memoria” que tienen la capacidad de
almacenar y propagar información a lo largo del tiempo. Estas celdas de memo-
ria están compuestas por una unidad central con una conexión autoalimentada
fija llamada carrusel de error constante (CEC). Junto con el CEC, se utilizan dos
compuertas adicionales para regular el flujo de información: una compuerta de
entrada (input gate) y una compuerta de salida (output gate), donde la compuerta
de entrada decide cuánta información nueva se debe agregar a la celda de memo-
ria y la compuerta de salida controla cuánta información de la celda de memoria
se debe transmitir hacia afuera. Además, una compuerta de olvido (forget gate)
determina cuánta información anterior se debe descartar de la celda de memoria.

FIGURA 2.3. Arquitectura de LSTM presentado en [18]3.

2.4.2. Unidad recurrente con compuertas

En la investigación realizada por [19] se propone una alternativa a la unidad
LSTM, conocida como Unidad Recurrente Cerrada (GRU), con el objetivo de me-
jorar el rendimiento en tareas de modelado de secuencias.

3Imagen tomada y editada de [18]



14 Capítulo 2. Introducción específica

La GRU se caracteriza por tener dos compuertas principales (ver figura 2.4): una
de actualización (update gate) y una de reinicio (reset gate) que desempeñan un
papel fundamental en el control del flujo de información dentro de la unidad.
La compuerta de actualización determina qué información del estado anterior se
debe mantener y qué nueva información se debe agregar, mientras que la com-
puerta de reinicio controla qué información del estado anterior se debe olvidar.
Así, las compuertas permiten que la GRU capture dependencias a largo plazo al
decidir qué información es relevante y debe mantenerse; de igual forma, decide
qué información es irrelevante y debe descartarse.

En cada paso de tiempo, la GRU toma el vector de entrada actual h(k) y el estado
oculto anterior h(k− 1). Luego, se calculan las activaciones de las compuertas de
actualización y reinicio utilizando funciones sigmoideas, así estas activaciones se
utilizan para calcular el nuevo estado oculto, que es una combinación del estado
oculto anterior y el nuevo candidato a estado oculto (state candidate gate). Este
nuevo estado oculto se pasa al siguiente paso de tiempo y también se utiliza como
salida de la unidad.

FIGURA 2.4. Arquitectura de GRU 4.

2.4.3. Modelo secuencia a secuencia con RNN

En la investigación efectuada por [21] del equipo de Google, se presenta un en-
foque basado en RNN para abordar el desafío de la traducción automática. En
lugar de depender de técnicas tradicionales basadas en modelos de lenguaje es-
tadísticos o basados en frases, los autores proponen el uso de un codificador y
un decodificador para transformar secuencias de entrada en secuencias de salida
correspondientes.

El codificador consiste en celdas LSTM que procesan la secuencia de entrada pala-
bra por palabra y genera una representación vectorial de estado oculto que captu-
ra la información relevante de la secuencia. Esta representación de estado oculto
condensa la secuencia de entrada en un vector fijo de dimensionalidad fija. El de-
codificador, que también se compone de celdas LSTM, recibe el estado oculto del

4Imagen tomada de [20]
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codificador y lo utiliza como contexto para generar una secuencia de salida paso
a paso.

El modelo fue entrenado utilizando un corpus paralelo en pares de oraciones
correspondientes a los idiomas de origen y destino. Se empleó un enfoque de
entrenamiento supervisado en el qué se introduce la secuencia de entrada en el
codificador y se entrena el decodificador para generar la secuencia de salida co-
rrespondiente. Se llevaron a cabo experimentos comparativos que demostraron
que el modelo secuencia a secuencia es considerablemente más eficiente que los
métodos basados en modelos de lenguaje estadísticos y en frases. Por ende, sus
resultados reflejan mejoras significativas en la calidad de la traducción.

2.4.4. Comparativa de redes neuronales recurrentes

Los resultados de los experimentos revelan que las unidades LSTM y GRU su-
peran a las unidades recurrentes más tradicionales que utilizan la función de
activación tangente hiperbólica (tanh). Se ha demostrado que las celdas con me-
canismos de compuertas son más efectivas para capturar dependencias a largo
plazo en las secuencias y lograr mejores resultados [22]. La figura 2.5 ilustra di-
chos resultados en dos conjuntos de datos de sonidos polifónicos, considerando
diferentes épocas de entrenamiento y tiempo. Aunque la GRU es más eficiente
computacionalmente debido a su menor cantidad de parámetros (ver tabla 2.1),
sus resultados son similares a los obtenidos por la LSTM.

FIGURA 2.5. Resultados de RNNs en datasets de sonidos polifóni-
cos 5.

5Imagen tomada de [22]
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Con los modelos para señales de habla presentados en la tabla 2.1, se muestran
los resultados detallados en la figura 2.6. Estos resultados respaldan la afirma-
ción de que tanto GRU como LSTM son comparables en términos de sus métricas
de rendimiento en el contexto de señales de habla y que GRU tiene una ventaja
significativa en términos de eficiencia computacional.

TABLA 2.1. Modelos utilizados en [22] para realizar pruebas de
rendimiento en conjuntos de datos.

Conjunto de datos RNN Neuronas Parámetros

Sonidos polifónicos tanh 100 ≈ 20100
Sonidos polifónicos LSTM 36 ≈ 19800
Sonidos polifónicos GRU 46 ≈ 20200
Señales de habla tanh 400 ≈ 168400
Señales de habla LSTM 195 ≈ 169100
Señales de habla GRU 227 ≈ 168900

FIGURA 2.6. Resultados de RNNs en datasets de señales de habla
6.

6Imagen tomada de [22]
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Capítulo 3

Diseño e implementación

En esta sección, se abordará la aplicación del FIS Mamdani para generar el data-
set utilizado en el entrenamiento del modelo seq2seq. Además, se describirá cómo
se realizó la clasificación de las frases objetivo y cómo se llevó a cabo su prepro-
cesamiento para adaptarlas al modelo NLG del sistema GeNeSys. Por último, se
presentarán las características específicas utilizadas en el entrenamiento de dicho
modelo.

3.1. Generación del conjunto de datos de entrenamiento

Los robots del sistema GeNeSys que poseen el conocimiento para ejecutar la ta-
rea de seguimiento de pared, actúan como potenciales instructores en la eventual
interacción de robots. Estos robots generan las variables descritas en la sección
2.3. Cada rango de estos valores determina el universo de discurso, donde inter-
actúan los conjuntos difusos y se ejecutan los pasos del controlador Mamdani.

Los conjuntos difusos son triangulares para todos sus componentes, por lo tanto,
sus grados de pertenencia se calculan mediante la ecuación 2.1.

3.1.1. Definición de conjuntos difusos

Cada uno de los términos lingüísticos asociados a los valores P, D, L y R guarda
una relación semántica con el propósito de cada uno de ellos en el proceso de
generalización y clusterización del GeNeSyS (descritos en la sección 2.3). En la fi-
gura 3.1a, el valor P gráficamente representado, consta de 5 términos que ilustran
de manera ambigua la cercanía o lejanía a la pared. De manera similar, la figura
3.1b muestra el valor D, que indica si el objeto se está acercando o alejando.

En cuanto a los valores L y R, se definen 11 conjuntos difusos, cuyos términos
lingüísticos se representan de forma práctica en la figura 3.1c, abarcando valores
discretos que van desde -0.9 hasta +0.9. Estos términos lingüísticos están relacio-
nados con la velocidad angular de los motores y su ambigüedad semántica se
puede apreciar en la tabla 3.1. Cada término utilizado en los nombres de los con-
juntos difusos puede incluir expresiones y modismos particulares que se apren-
den a través de la experiencia y la interacción de los individuos.
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(A) Componente P

(B) Componente D

(C) Salidas L y R

FIGURA 3.1. Representación gráfica de conjuntos difusos de todos
los componentes.
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TABLA 3.1. Valores discretos y términos lingüísticos correspon-
dientes a la figura 3.1c.

Valor Término lingüístico

-0.9 Muy rápido hacia atrás
-0.8 Bastante rápido hacia atrás
-0.4 Más o menos rápido hacia atrás
-0.3 Despacito hacia atrás
-0.1 Muy lento hacia atrás
0.1 Muy lento hacia delante
0.3 Despacito hacia delante
0.5 Medio rápido hacia delante
0.6 Rápidamente hacia delante
0.8 Bastante rápido hacia delante
0.9 Muy rápido hacia delante

3.1.2. Memoria asociativa difusa

De acuerdo a la cantidad de conjuntos difusos en los componentes P y D, existen
15 posibles combinaciones que activan una regla específica mediante la ecuación
2.2, siendo estas reglas parte de un conocimiento experto que de forma nativa
requiere el FIS Mamdani [23]. Los valores de pertenencia de P y D generan la
activación de una regla posible como se puede ver en la tabla 3.2. Por ejemplo, si
un determinado valor P y otro D pertenecen al conjunto “Lejos” y “Acercándose”
con grado de pertenencia 1 respectivamente, se activa la regla 0.5 del valor L y
0.1 de R. Al Verificar la tabla 3.1 se observa que el valor L activa la regla “Medio
rápido hacia delante” mientras que el valor R activa “Muy lento hacia delante”.

TABLA 3.2. Activación de reglas L y R

(A) Reglas componente L

MuyLejos Lejos Ok Cerca MuyCerca

Acercándose 0.6 0.5 -0.1 -0.9 -0.3
SinCambio 0.8 0.6 0.3 -0.8 -0.3
Alejándose 0.9 0.8 0.6 0.1 -0.3

(B) Reglas componente R

MuyLejos Lejos Ok Cerca MuyCerca

Acercándose -0.1 0.1 0.6 0.9 -0.3
SinCambio -0.3 -0.1 0.3 0.8 -0.3
Alejándose -0.4 -0.3 -0.1 0.5 -0.3

3.1.3. Tabulación de los datos

Implementando Python, se generaron diez mil valores aleatorios para los compo-
nentes P y D, distribuidos uniformemente dentro de sus respectivos universos de
discurso. Estos valores se utilizaron como las primeras dos características o fea-
tures del conjunto de datos para el entrenamiento. Para computar los valores de
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L y R, se creó una instancia de un controlador FIS utilizando la librería skfuzzy.
Este controlador recibió todos los valores de P y D como parámetros, los que se
denominan “antecedentes” según la librería [24]. Los valores de P y D se asig-
naron a los conjuntos difusos respectivos de las figuras 3.1a y 3.1b como valores
predeterminados. Luego, se calcularon los valores utilizando la ecuación 2.4. El
resultado de este cálculo es un valor que forma parte del universo de discurso
“consecuente”, cuyos conjuntos difusos están representados en la figura 3.1c.

La librería skfuzzy proporciona métodos que permiten obtener información po-
tencialmente útil para el entrenamiento del modelo, como el término lingüístico
asociado al respectivo conjunto difuso y su grado de pertenencia. En las tablas
3.4 y 3.5 se muestra la información obtenida de skfuzzy basada en los valores de
P, D, L y R de la tabla 3.3.

TABLA 3.3. Valores de P, D, L y R

P D L R

0.0347 0.1795 -0.1579 0.5969
-0.9689 0.8072 0.6261 -0.0919
0.9820 -0.2112 -0.2398 -0.2265
0.0116 -0.0365 0.3073 0.2190
-0.9307 0.2698 0.6200 -0.0840

TABLA 3.4. Información adicional de P y D

Conjunto difuso P Pertenencia P Conjunto difuso D Pertenencia D

ok 0.91 acercandose 0.90
muy lejos 0.95 acercandose 1.0
muy cerca 0.97 alejandose 1.0

ok 0.97 sin cambio 0.82
muy lejos 0.88 acercandose 1.0

TABLA 3.5. Información adicional de L y R

Conjunto difuso L Pertenencia L Conjunto difuso R Pertenencia R

muy lento hacia atrás 0.71 rápidamente hacia delante 0.97
rápidamente hacia delante 0.87 muy lento hacia atrás 0.96

despacito hacia atrás 0.69 despacito hacia atrás 0.63
despacito hacia delante 0.96 despacito hacia delante 0.59

rápidamente hacia delante 0.90 muy lento hacia atrás 0.92

3.2. Preprocesamiento del texto y los datos

De los datos tabulados obtenidos, los componentes P y D se generaron aleatoria-
mente dentro de rangos específicos con el objetivo de condicionar al FIS y obte-
ner valores con grados de pertenencia superiores a 0.8 para cada conjunto difuso.
Esta condición se muestra en la tabla 3.4 y es importante tener en cuenta estas
condiciones durante el preprocesamiento de todos los datos numéricos.
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3.2.1. Análisis exploratorio de datos

En el análisis de los datos, se observa una clara agrupación de los conjuntos difu-
sos P y D en su distribución. Sin embargo, los valores L y R no presentan la misma
tendencia, como se evidencia en la gráfica 3.2. Esta disparidad se debe a la depen-
dencia de los conjuntos L y R con respecto a la inferencia Mamdani, que se explica
detalladamente en la sección 2.1. Además, al examinar las agrupaciones en pares
de componentes en la misma figura, se puede apreciar la posible existencia de
correlaciones entre ellos. Estas correlaciones se visualizan en la figura 3.3 y son
coherentes con los comportamientos esperados para una tarea de seguimiento de
pared. A partir de estas observaciones, se puede llegar a una conclusión preli-
minar en la que el FIS Mamdani adopta decisiones más drásticas para alejarse o
acercarse a la pared con el motor izquierdo.

FIGURA 3.2. Distribución de pares de P, D, L y R1.
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FIGURA 3.3. Correlación de P, D, L y R2.

3.2.2. Etiquetado de datos y asignación de frases objetivo

Es factible llevar a cabo la categorización de cada uno de los registros presentes en
el conjunto de datos mediante la aplicación de las reglas activadas en la memoria
asociativa difusa, detalladas exhaustivamente en las tablas 3.2. En aras de esta-
blecer un proceso automático de asignación de frases, se han asignado categorías
específicas que se encuentran expuestas en la tabla 3.6 y actúan como etiquetas
descriptivas. En la figura 3.4 se puede visualizar la distribución de los datos por
las categorías previamente expuestas.

Siguiendo el ejemplo expuesto en la sección 3.1.2, donde se considera P como
“Lejos”, D como “Acercándose”, L como “Medio rápido hacia delante” y R “Muy
lento hacia delante”, es posible concatenar estos cuatro conjuntos difusos para
obtener una estructura de frase completa. Esta estructura se verá complemen-
tada con los demás componentes de una oración estructurada, resultando en la
siguiente formulación: “Cuándo estés lejos de la pared y te estes acercando a ella,
gira tu rueda izquierda medio rápido hacia delante y tu rueda derecha medio len-
to hacia delante”. Mediante este enfoque, se logra generar una frase que puede
ser considerada como una potencial instrucción verbalizada, susceptible de ser
emitida por el robot instructor perteneciente al sistema GeNeSys. Asimismo, es
importante destacar que las frases establecidas como etiquetas en las quince cate-
gorías correspondientes, pueden ser consultadas en la tabla 3.7 y serán utilizadas
en calidad de corpus textual para la herramienta de tokenización integrada en el
framework Keras con relleno de secuencias. De este modo, se viabiliza un enfo-
que integral que favorece la tarea de procesamiento y análisis del lenguaje natural
en el contexto planteado.
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FIGURA 3.4. Distribución de datos por categorías.3.

TABLA 3.6. Datos de los conjuntos P, D y categoría

Conjunto P Conjunto D Categoría

Muy lejos Acercándose 1
Lejos Acercándose 2
Ok Acercándose 3

Cerca Acercándose 4
Muy cerca Acercándose 5
Muy lejos Sin cambio 6

Lejos Sin cambio 7
Ok Sin cambio 8

Cerca Sin cambio 9
Muy cerca Sin cambio 10
Muy lejos Alejándose 11

lejos Alejándose 12
ok Alejándose 13

Cerca Alejándose 14
Muy cerca Alejándose 15
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TABLA 3.7. Frases por categoría

Categoría Frase

1 Cuando estés muy lejos de la pared, pero te estás acercando a ella,
gira tu rueda izquierda rápidamente hacia delante, y gira tu rueda
derecha muy lento hacia atrás.

2 Cuando estés lejos de la pared, pero te estás acercando a ella, gira
tu rueda izquierda medio rápido hacia delante, y gira tu rueda
derecha muy lento hacia delante.

3 Cuando estés a la distancia requerida, pero te estás acercando a
la pared, gira tu rueda izquierda muy lento hacia atrás, y gira tu
rueda derecha rápidamente hacia delante.

4 Cuando estés cerca a la pared, y te estás acercando más a ella, gira
tu rueda izquierda muy rápido hacia atrás, y gira tu rueda derecha
muy rápido hacia delante.

5 Cuando estés muy cerca a la pared, y te estás acercando aun más a
ella, gira tu rueda izquierda despacito hacia atrás, y gira tu rueda
derecha despacito hacia atrás.

6 Cuando estés muy lejos de la pared, pero ni te alejas más ni te acer-
cas a ella, gira tu rueda izquierda bastante rápido hacia delante, y
gira tu rueda derecha despacito hacia atrás.

7 Cuando estés lejos de la pared, pero ni te alejas más ni te acercas a
ella, gira tu rueda izquierda rápidamente hacia delante, y gira tu
rueda derecha muy lento hacia atrás.

8 Cuando estés a la distancia requerida, y ni te alejas ni te acercas
a ella, gira tu rueda izquierda despacito hacia delante, y gira tu
rueda derecha despacito hacia delante.

9 Cuando estés cerca a la pared, pero ni te acercas más ni te alejas de
ella, gira tu rueda izquierda bastante rápido hacia atrás, y gira tu
rueda derecha bastante rápido hacia delante.

10 Cuando estés muy cerca a la pared, pero ni te acercas más ni te
alejas de ella, gira tu rueda izquierda despacito hacia atrás, y gira
tu rueda derecha despacito hacia atrás.

11 Cuando estés muy lejos de la pared, y te estás alejando aún más
de ella, gira tu rueda izquierda muy rápido hacia delante y gira tu
rueda derecha más o menos rápido hacia atrás.

12 Cuando estés lejos de la pared, y te estás alejando más de ella, gira
tu rueda izquierda bastante rápido hacia delante, y gira tu rueda
derecha despacito hacia atrás.

13 Cuando estés a la distancia requerida, pero te estás alejando de la
pared, gira tu rueda izquierda rápidamente hacia delante, y gira
tu rueda derecha muy lento hacia atrás.

14 Cuando estés cerca a la pared, pero te estás alejando de ella, gira tu
rueda izquierda muy lento hacia delante, y gira tu rueda derecha
medio rápido hacia delante.

15 Cuando estés muy cerca a la pared, pero te estás alejando de ella,
gira tu rueda izquierda despacito hacia atrás, y gira tu rueda dere-
cha despacito hacia atrás.
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3.3. Descripción del modelo implementado

En la biblioteca Skfuzzy, se utiliza la definición de conjuntos difusos anteceden-
tes y consecuentes como un pipeline en el procesamiento de los valores P, D, L y
R. Este proceso asigna a cada valor de entrada el conjunto difuso al que perte-
nece, tomando el término con el valor más alto de membresía. Esta característica
agrega al modelo de este trabajo una similitud con los modelos co-evolutivos del
GeNeSys, específicamente en la inferencia difusa para la generalización de los
datos.

Se ha creado un modelo de secuencias básico utilizando seq2seq con PyTorch. El
codificador consta de una capa de celdas LSTM con 64 neuronas, mientras que el
decodificador es idéntico al codificador, con la adición de una capa de embedding
que recibe las secuencias ya tokenizadas de los términos lingüísticos generados
por el FIS. Por último, se incluye una capa densa con un número de neuronas
igual al tamaño del vocabulario que entrega las secuencias inferidas. La estructu-
ra final del modelo puede visualizarse en la figura 3.5.

FIGURA 3.5. Arquitectura del modelo NLG del GeNeSys

3.4. Entrenamiento del modelo

Con los datos de entrada y las frases objetivo completas ya preprocesadas en se-
cuencias numéricas, se procede a dividir los datos en conjuntos de entrenamiento
(60 %), validación (20 %) y pruebas (20 %) con distribución uniforme de las 15
categorias. Los términos lingüísticos de cada conjunto difuso se consideran ca-
racterísticas del dataset tabular y se concatenan para generar una secuencia de
entrada en el decoder, como se ilustra en la figura 3.5.

El modelo se entrena durante 150 épocas utilizando el optimizador Adam con
una tasa de aprendizaje de 0.001 y un tamaño de lote de 64. La eficiencia compu-
tacional del modelo se evalúa utilizando un equipo ASUS TUF con procesador
Ryzen 3550h sin GPU disponible y la plataforma Google Colaboratory para algu-
nos casos de uso de GPU.





27

Capítulo 4

Ensayos y resultados

4.1. Software utilizado

Webots es un paquete de software profesional para simulación de robots móvi-
les. Permite crear entornos virtuales en 3D con propiedades físicas, como masa,
articulaciones, coeficientes de fricción, entre otros. Los usuarios pueden agregar
objetos simples o robots móviles con diferentes esquemas de locomoción (ruedas,
patas o vuelo). Además, se pueden equipar con sensores y actuadores, como sen-
sores de distancia, ruedas motrices, cámaras, motores, sensores táctiles, emisores
y receptores, entre otros. Los robots pueden programarse individualmente para
exhibir el comportamiento deseado.

Webots es especialmente útil para proyectos de investigación y educación relacio-
nados con la robótica móvil. Se ha utilizado en diversas áreas, como prototipado
de robots móviles (investigación académica, industria automotriz, aeronáutica,
industria de aspiradoras, industria de juguetes, aficionado, entre otros), inves-
tigación en locomoción de robots (robots con patas, humanoides, cuadrúpedos,
entre otros), investigación en comportamiento adaptativo (algoritmos genéticos,
redes neuronales, inteligencia artificial, etc.), enseñanza de robótica (cursos de
robótica, programación en C/C++/Java/Python, etc.) y competencias de robots
[25].

4.1.1. Implementación del modelo en webots

La implementación (ver Figura 4.1) exhibe al robot inmerso en un entorno donde
se llevan a cabo tanto el aprendizaje como la evaluación de su comportamiento
en la tarea cóncava. En la sección detalles de la plataforma webots, se define un
árbol de nodos que engloba diversos aspectos físicos de los robots a simular (ver
Figura 4.2a). Dentro de estos elementos, se encuentra el nodo-Robot tipo supervi-
sor que alberga un controlador Python llamado MasterConcava90-51-wPT. Este
ejecuta el método Recomendaciones(), que se encuentra en la parte del código
del ambiente webots tal como se muestra en la figura 4.2b. El propósito de este
método es enviar los valores P, D, L y R al modelo NLG y generar un archivo de
extensión .txt con los resultados obtenidos.
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FIGURA 4.1. Escenario de prueba del robot instructor

(A) a) (B) b)

FIGURA 4.2. a.) Nodo supervisor y controlador. b.) Método de ac-
tivación NLG

4.2. Pruebas unitarias

Los datos utilizados en esta sección fueron extraídos del subconjunto de datos
con una distribución de clases uniforme, tal como se ilustra en la figura 4.3 y que
fue previamente mencionado en la sección 3.4. Utilizando los mismos criterios,
se generan 15 datos arbitrarios que no hicieron parte del mencionado conjunto
de datos y corresponden a un registro por categoría (ver tabla 4.1). Durante estas
pruebas unitarias, se sometieron a evaluación todas las etapas funcionales del
modelo NLG descrito en la sección 3.3.
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FIGURA 4.3. Distribución de clases en datos de prueba

TABLA 4.1. Valores pruebas unitarias

P D L R CAT

-0.8970 0.7209 0.5828 -0.0657 1
-0.4765 0.9839 0.5127 0.0745 2
-0.0473 0.9302 -0.0291 0.5409 3
0.4314 0.7532 -0.8686 0.8373 4
0.9873 0.5057 -0.3127 -0.2746 5
-0.8971 -0.0014 0.7669 -0.2669 6
-0.4792 0.0159 0.6159 -0.1090 7
-0.0079 0.0239 0.2634 0.3232 8
0.4102 0.0126 -0.7897 0.7699 9
0.9635 0.0123 -0.3596 -0.1754 10
-0.9777 -0.9732 0.8963 -0.3963 11
-0.5071 -0.6878 0.8179 -0.3179 12
0.0798 -0.9896 0.5002 0.0197 13
0.4882 -0.3743 0.0412 0.3824 14
0.9472 -0.8104 -0.2648 -0.2296 15

4.2.1. Resultados por etapas del NLG

Cada uno de los valores correspondientes a las diferentes categorías fue sometido
al proceso del FIS con el objetivo de obtener los conjuntos difusos que presenta-
ron el mayor grado de pertenencia. Estos conjuntos difusos se entregan en forma
de una lista que se concatena para formar una única frase que no necesariamen-
te constituye una estructura coherente. Posteriormente, esta frase se transforma
en una secuencia numérica que se utilizará como entrada para el decodificador
del modelo de seq2seq. Los conjuntos difusos de cada categoría y las respectivas
secuencias se observan en la tabla 4.2.
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TABLA 4.2. Datos entregados por el FIS - Secuencias Tokenizer

Conjuntos difusos FIS Secuencias Tokenizer

muy lejos, acercándose, rápidamente hacia de-
lante, muy lento hacia atrás

14, 27, 32, 4, 15, 14, 26, 4, 9

lejos, acercándose, medio rápido hacia delante,
muy lento hacia delante

27, 36, 23, 4, 15, 14, 26, 4, 15

ok, acercándose, muy lento hacia atrás, medio
rápido hacia delante

14, 26, 4, 9, 36, 23, 4, 15

cerca, acercándose, muy rápido hacia atrás, bas-
tante rápido hacia delante

25, 14, 23, 4, 9, 33, 23, 4, 15

muy cerca, acercándose, despacito hacia atrás,
despacito hacia atrás

14, 25, 19, 4, 9, 19, 4, 9

muy lejos, sin cambio, bastante rápido hacia de-
lante, despacito hacia atrás

14, 27, 33, 23, 4, 15, 19, 4, 9

lejos, sin cambio, rápidamente hacia delante,
muy lento hacia atrás

27, 32, 4, 15, 14, 26, 4, 9

ok, sin cambio, despacito hacia delante, despa-
cito hacia delante

19, 4, 15, 19, 4, 15

cerca, sin cambio, bastante rápido hacia atrás,
bastante rápido hacia delante

25, 33, 23, 4, 9, 33, 23, 4, 15

muy cerca, sin cambio, más o menos rápido ha-
cia atrás, muy lento hacia atrás

14, 25, 24, 39, 40, 23, 4, 9, 14, 26,
4, 9

muy lejos, alejándose, muy rápido hacia delan-
te, más o menos rápido hacia atrás

14, 27, 14, 23, 4, 15, 24, 39, 40, 23,
4, 9

lejos, alejándose, bastante rápido hacia delante,
despacito hacia atrás

27, 33, 23, 4, 15, 19, 4, 9

ok, alejándose, medio rápido hacia delante,
muy lento hacia delante

36, 23, 4, 15, 14, 26, 4, 15

cerca, alejándose, muy lento hacia delante, des-
pacito hacia delante

25, 14, 26, 4, 15, 19, 4, 15

muy cerca, alejándose, despacito hacia atrás,
despacito hacia atrás

14, 25, 19, 4, 9, 19, 4, 9

En última instancia, se lleva a cabo un análisis de las frases generadas para cada
categoría. Es importante destacar que las frases generadas, si bien carecen de los
signos de puntuación y otras convenciones gramaticales propias del idioma espa-
ñol, arrojan resultados idénticos a los presentados en la tabla 3.7. A continuación
se presentan las frases correspondientes a cada categoría generadas por el modelo
NLG:

1. Cuando estés muy lejos de la pared pero te estás acercando a ella gira tu
rueda izquierda rápidamente hacia delante y gira tu rueda derecha muy
lento hacia atrás.

2. Cuando estés lejos de la pared pero te estás acercando a ella gira tu rueda
izquierda medio rápido hacia delante y gira tu rueda derecha muy lento
hacia delante.

3. Cuando estés a la distancia requerida pero te estás acercando a la pared
gira tu rueda izquierda muy lento hacia atrás y gira tu rueda derecha rápi-
damente hacia delante.
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4. Cuando estés cerca a la pared y te estás acercando más a ella gira tu rueda
izquierda muy rápido hacia atrás y gira tu rueda derecha muy rápido hacia
delante.

5. Cuando estés muy cerca a la pared y te estás acercando aún más a ella gira
tu rueda izquierda despacito hacia atrás y gira tu rueda derecha despacito
hacia atrás.

6. Cuando estés muy lejos de la pared pero ni te alejas más ni te acercas a
ella gira tu rueda izquierda bastante rápido hacia delante y gira tu rueda
derecha despacito hacia atrás.

7. Cuando estés lejos de la pared pero ni te alejas más ni te acercas a ella gira
tu rueda izquierda rápidamente hacia delante y gira tu rueda derecha muy
lento hacia atrás.

8. Cuando estés a la distancia requerida y ni te alejas ni te acercas a ella gira tu
rueda izquierda despacito hacia delante y gira tu rueda derecha despacito
hacia delante.

9. Cuando estés cerca a la pared pero ni te acercas más ni te alejas de ella
gira tu rueda izquierda bastante rápido hacia atrás y gira tu rueda derecha
bastante rápido hacia delante.

10. Cuando estés muy cerca a la pared pero ni te acercas más ni te alejas de
ella gira tu rueda izquierda despacito hacia atrás y gira tu rueda derecha
despacito hacia atrás.

11. Cuando estés muy lejos de la pared y te estás alejando aun más de ella gira
tu rueda izquierda muy rápido hacia delante y gira tu rueda derecha más o
menos rápido hacia atrás.

12. Cuando estés lejos de la pared y hacia estás alejando más y ella gira tu rue-
da izquierda bastante lejos hacia delante y gira tu rueda derecha despacito
hacia atrás.

13. Cuando estés a la distancia requerida pero te estás alejando de la pared gira
tu rueda izquierda rápidamente hacia delante y gira tu rueda derecha muy
lento hacia atrás.

14. Cuando estés cerca a la pared pero te estás alejando de ella gira tu rueda
izquierda muy lento hacia delante y gira tu rueda derecha medio rápido
hacia delante.

15. Cuando estés muy cerca a la pared pero te estás alejando de ella gira tu rue-
da izquierda despacito hacia atrás y gira tu rueda derecha despacito hacia
atrás.

4.2.2. Errores en las secuencias generadas en el dataset de test

El conjunto de pruebas utilizado se compone de 2000 ejemplos que fueron so-
metidos al modelo para la generación de secuencias. A través del análisis de las
frases generadas, se detectaron errores que afectaron tanto a palabras individua-
les como a la estructura general de las secuencias. En particular, se identificó un
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total de 11 secuencias con errores, distribuidas de la siguiente manera: 7 secuen-
cias pertenecen a la categoría 12, 3 secuencias corresponden a la categoría 9 y 1
secuencia a la categoría 8.

De las 7 secuencias pertenecientes a la categoría 12 que presentaron errores, se
observó que 5 de ellas mostraron una mayor probabilidad de encontrar el token
“lejos” en lugar del correspondiente “lento”. Ambas palabras comparten la ca-
racterística de representar una condición o estado opuesto a la rapidez, ya sea en
términos de distancia o movimiento. Sin embargo, esta variación en la elección
del token genera confusión al definir la instrucción relacionada con el movimien-
to de la rueda correspondiente. En las dos secuencias restantes, se agregaron los
tokens “pero” y “lento”, que resultaron en frases confusas o redundantes. En la
tabla 4.3 se pueden apreciar las palabras incorrectas o añadidas, resaltadas en co-
lor rojo. Por otro lado, en las frases pertenecientes a la categoría 9, se observa
una irregularidad en la instrucción para girar la rueda derecha. Finalmente, la
única frase de la categoría 8 no especifica de manera concreta el componente de
acercamiento a la pared.

TABLA 4.3. Secuencias erróneas

CAT Secuencias

12 cuando estés lejos de la pared y te estás alejando más de ella gira tu
rueda izquierda bastante lejos hacia delante y gira tu rueda derecha

despacito hacia atrás
12 cuando estés lejos de la pared pero te estás alejando más de ella gira tu

rueda izquierda tu rápido hacia delante y gira tu rueda derecha
despacito hacia atrás lento

8 cuando estés a la distancia requerida y ni te acercas ni te rápidamente
a ella gira tu rueda izquierda despacito hacia delante y gira tu rueda

derecha despacito hacia delante
9 cuando estés cerca a la pared pero ni te acercas más ni te alejas de ella

gira tu rueda izquierda bastante rápido hacia atrás y gira tu hacia
derecha bastante rápido hacia delante

4.3. Certificación en individuo

Se selecciona aleatoriamente un individuo de la sociedad de robots que ya tenga
el conocimiento necesario para llevar a cabo la tarea de seguimiento de pared, in-
dependientemente de los parámetros de sus sistemas conexionistas. Según [5], la
comunicación entre los individuos se realiza mediante archivos planos que con-
tienen instrucciones numéricas P, D, L, R; estas instrucciones son depositadas por
el robot instructor en un directorio específico, donde es leído por el robot apren-
diz para iniciar su proceso de aprendizaje. La Figura 4.4 muestra un fragmento
del archivo plano generado por el robot instructor que utiliza para certificar el
modelo NLG.
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FIGURA 4.4. Archivo plano de robot instructor

4.3.1. Distribución de los datos del instructor

El instructor genera 47 registros cuyos valores, a diferencia de los datos genera-
dos en este trabajo, no tienen estrictamente grados de pertenencia mayores a 0,8.
Por lo tanto, como se observa en la figura 4.5, su distribución es significativamen-
te diferente, pues contiene datos que no pertenecen a ninguna de las categorías
visualizadas en la figura 3.4 y solo una minoría de ellos están clasificados en las
categorías 8 y 9.

4.3.2. Resultados con los datos del instructor

Es importante destacar que una considerable cantidad de datos generados por el
robot instructor no presenta las mismas características que los datos utilizados
para entrenar el modelo NLG. Como resultado, muchas de las secuencias genera-
das carecen de coherencia y se alejan significativamente de la estructura canónica
observada con respecto a las frases de la tabla 3.7. Sin embargo, a pesar de es-
ta variabilidad de los valores de entrada, se pueden identificar subconjuntos de
secuencias que mantienen una coherencia interna y siguen la estructura deseada.

En el análisis de los registros generados por el robot instructor, se identificaron
un total de 32 secuencias diferentes. De los 48 registros totales, se encontró que
9 de ellos cumplieron con los criterios establecidos y pertenecieron a la categoría
14, mientras que otras 2 secuencias se clasificaron en la categoría 8. Sin embargo,
la mayoría de las frases restantes carecían de coherencia y presentaron errores en
varios niveles, como la repetición de palabras, la inclusión de términos incorrec-
tos o una estructura gramatical completamente incomprensible. Estos resultados
destacan la variabilidad en la calidad y precisión de las secuencias generadas por
el modelo NLG en relación con las expectativas establecidas.
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A continuación se enumeran algunas de las secuencias erróneas generadas desde
los datos del instructor. Allí se evidencian las falencias del uso del FIS Mamdani
con respecto al ANFIS del robot del GeNeSys:

1. cuando estés muy a a la pared te estás te acercando rápido estás gira ella de
izquierda gira tu rueda y despacito hacia atrás y gira tu rueda muy de hacia

2. cuando estés a a requerida medio y ni te acercando a te distancia a ella
gira tu muy izquierda derecha la estás rueda gira tu derecha rápidamente
despacito rueda

3. cuando cuando derecha más a ella delante despacito estás pero lejos ni estás
a acercando rueda tu gira hacia de hacia de tu la izquierda gira hacia hacia
derecha de

4. atrás cuando acercando lejos la a y te estás pero lejos rápido estás tu tu
rueda izquierda tu rueda hacia estás y gira tu gira tu rueda hacia ni

5. atrás cuando lejos rápido la a pared te estás pero rápidamente rápido estás
tu rueda ella estés alejando hacia te aún y tu rueda derecha de acercando
hacia estás

FIGURA 4.5. Distribución de datos del robot instructor
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4.4. Métricas

En el marco de este trabajo, se utilizan métricas fundamentales para evaluar el de-
sempeño del modelo de generación de lenguaje natural. La exactitud (accuracy) y
la pérdida (loss) proporcionan una visión cuantitativa de la calidad de las predic-
ciones y la capacidad de ajuste del modelo a los datos. Dado que las frases siguen
una estructura canónica en todas sus categorías y la cantidad de datos está ba-
lanceada, se evaluarán las clasificaciones del vocabulario utilizando las métricas
mencionadas anteriormente.

4.4.1. Exactitud y pérdida en entrenamiento, validación y pruebas

La métrica de exactitud, o accuracy, es una medida comúnmente utilizada en pro-
blemas de clasificación para determinar la proporción de predicciones correctas
respecto al total de predicciones realizadas [26]. En el caso del modelo NLG de-
sarrollado, esta métrica se aplica para evaluar la precisión en la generación de
secuencias numéricas, comparando las secuencias generadas con las secuencias
de referencia.

Por otro lado, la métrica de pérdida, o loss, es una medida que indica la diferencia
entre el valor predicho por el modelo y el valor real. El objetivo es minimizar esta
pérdida, ya que un valor menor indica un mejor ajuste del modelo a los datos de
entrenamiento [27].

De acuerdo al número de épocas de entrenamiento mencionado en la sección
3.4, se visualiza el comportamiento de accuracy y loss en la figura 4.6 donde se
incluyen también resultados en el conjunto de datos de validación. Finalmente,
en la tabla 4.4 se visualizan las métricas obtenidas a partir del conjunto de datos
de entrenamiento, validación y pruebas generados por el FIS.

TABLA 4.4. Métricas de entrenamiento y pruebas

ETAPA Loss Accuracy ( %)

Entrenamiento/Validación 0.1039/0.1067 99,77
Pruebas 0.1027 99,87

4.5. Comparación con investigaciones relacionadas

Al comparar diferentes enfoques, es importante tener en cuenta varios aspectos
que se derivan de los objetivos planteados en este trabajo. El modelo de gene-
ración de lenguaje natural desarrollado en este estudio presenta características
distintivas en comparación con los trabajos mencionados en la sección 1.4. En
primer lugar, no requiere un preprocesamiento extenso de los datos. A diferencia
de los enfoques anteriores, el modelo NLG utilizado en este estudio permite utili-
zar los datos obtenidos del FIS directamente, sin necesidad de preprocesamiento,
tanto para el ingreso al modelo seq2seq como durante su implementación. Ade-
más, los datos obtenidos del ANFIS se entregaron al modelo en el mismo rango
que los datos del FIS. Esto contrasta con los modelos del estado del arte, don-
de se requiere la creación de estructuras de entidades, grafos lógicos o modelos
pre-operativos antes de generar las secuencias correspondientes. Sin embargo, es
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importante destacar que las secuencias generadas en este trabajo siguen un pa-
trón gramatical más limitado en comparación con los resúmenes y descripciones
generados por otros enfoques.

En general, los demás trabajos en este campo incorporan conocimiento experto
tanto en la extracción de los datos de entrada como en su preprocesamiento. Por
ejemplo, el modelo mencionado en la sección 1.4.1 utiliza un esquema de grafo
lógico que implica la toma de decisiones diseñadas por expertos en sistemas de
fraude. Este enfoque guarda similitud con el FIS, donde el diseño de conjuntos
difusos puede considerarse como conocimiento experto que contribuye a maxi-
mizar la probabilidad de las secuencias en el decodificador del modelo de gene-
ración de lenguaje natural.

(a)

(b)

FIGURA 4.6. a) Loss en entrenamiento y validación. b) Accuracy en
entrenamiento.
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En cuanto a la complejidad del modelo neuronal empleado, en NLG para el Ge-
NeSys es bastante inferior, no utiliza capas de atención o transformers. Por ende
su eficiencia computacional en entrenamiento e inferencia ayuda a que el proceso
de transmisión de conocimiento no sea fuertemente impactado en la interacción
de los individuos GeNeSys.

4.6. Impacto del ANFIS en el modelo NLG

El ANFIS, como el sistema generalizador del GeNeSys, recibe instrucciones de
otro robot para iniciar su interacción con el entorno, donde se entrenan sus pará-
metros antecedentes y consecuentes [5]. En la figura 4.7, se pueden visualizar los
conjuntos difusos P y D que corresponden al robot instructor.

Por otro lado, el robot aprendiz, en su proceso de aprendizaje, interactúa con
el entorno tratando de asimilar las recomendaciones del robot instructor. Dicho
aprendizaje es independiente de la topología de los ANFIS, pues pueden ser dife-
rentes en cada robot, y por esto la cantidad y distribución de los conjuntos difusos
en el robot aprendiz es muy diferente, como se muestra en la figura 4.8.

FIGURA 4.7. Conocimiento ANFIS instructor
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FIGURA 4.8. Conocimiento ANFIS aprendiz

El cambio evidente en los conjuntos difusos de cada individuo confirma la pro-
piedad adaptativa del ANFIS, que provoca cambios significativos que trascien-
den el contexto del FIS implementado. En consecuencia, la generación de frases
correctas en el modelo NLG dependerá de si los datos se ajustan a las distribucio-
nes implementadas en el FIS Mamdani. De lo contrario, como ocurrió en la gran
mayoría de los registros, las secuencias serán incomprensibles.
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Capítulo 5

Conclusiones

A continuación se presentan las conclusiones obtenidas en la implementación del
NLG de la investigación realizada además de listar ciertos trabajos futuros que
podrán nacer producto de los resultados.

5.1. Conclusiones generales

Este trabajo ha permitido la combinación de lógica difusa con un sistema de
aprendizaje profundo para generar secuencias que representan potenciales ins-
trucciones verbales para un robot que desea enseñarle su comportamiento a otro.
Si bien la mayoría de las secuencias generadas con el FIS fueron correctas, la pro-
piedad adaptativa del ANFIS introdujo diferencias significativas en la distribu-
ción del conocimiento para la tarea de seguimiento de pared, derivando en la
generación de secuencias incomprensibles. Por lo tanto, es importante conside-
rar que el modelo de aprendizaje profundo utilizado debería tener propiedades
adaptativas que le permitan ajustarse a la diversidad de comportamientos de los
sistemas conexionistas presentes en el GeNeSys.

Al parecer, la incongruencia en las frases generadas con datos del ANFIS podría
ser causada parcialmente por la falta de ejemplos en muchas combinaciones de
P, D, L y R que cumplen el criterio de grados de pertenencia mayor a 0.8. Este
principio se consideró necesario ya que de lo contrario las respuestas implicarían
la combinación de reglas difusas del FIS Mamdani, es decir, acarrearía el com-
portamiento del controlador original. Por lo tanto, el comportamiento del ANFIS
se vería totalmente suprimido en la interacción con el modelo para la genera-
ción de expresiones lingüísticas. Sin embargo, esta falta de ejemplos en ciertas
combinaciones de P, D, L y R afecta la capacidad del modelo para generar frases
coherentes.

Relacionar números decimales con texto ha sido un desafío considerable. Las
combinaciones de texto y números generalmente se han realizado en el contexto
de entrada entera y salida vectorial utilizando capas de embedding. Sin embargo,
mediante el uso del FIS y los términos lingüísticos, se logró establecer una rela-
ción aproximada que ayudó en la generación de estas secuencias. Es importante
destacar que en el contexto del ANFIS, estos términos lingüísticos son imprede-
cibles.

Por otra parte, la simplicidad del modelo fue efectiva para los tiempos de entrena-
miento y las pruebas unitarias. No obstante, sí hay un tiempo agregado de varios
segundos al inicio de la simulación que para el GeNeSys, con muchos individuos
y varios ANFIS en cada uno, podría incrementar el tiempo de procesamiento.
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5.2. Próximos pasos

Mencionados previamente, se identificaron varios aspectos que pueden ser objeto
de mejora en trabajos futuros:

Desarrollar un modelo de aprendizaje profundo especializado en NLG que
tenga propiedades adaptativas que sea capaz de verbalizar los comporta-
mientos particulares de los ANFIS.

Desarrollar un modelo de comprensión de lenguaje natural (NLU, por sus
siglas en inglés, Natural Language Understanding) que a partir de los patrones
lingüísticos utilizados en NLG, pueda generar valores P, D, L y R, es decir,
un proceso inverso al abordado en este trabajo. Con el fin que los robots
aprendices tengan a su disposición los valores numéricos necesarios para el
aprendizaje cultural.

Recopilar muestras de un mayor número de individuos del sistema Ge-
NeSys, lo que permitiría identificar patrones que faciliten la generación de
lenguaje natural en el proceso de aprendizaje.
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for GRU and LSTM networks». En: Information Sciences 616 (2022),
págs. 229-254. ISSN: 0020-0255. DOI:
https://doi.org/10.1016/j.ins.2022.10.078. URL:
https://www.sciencedirect.com/science/article/pii/S0020025522011987.

[21] Ilya Sutskever, Oriol Vinyals y Quoc V. Le. Sequence to Sequence Learning
with Neural Networks. 2014. arXiv: 1409.3215 [cs.CL].

[22] Junyoung Chung et al. Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling. 2014. arXiv: 1412.3555 [cs.NE].

[23] DANIEL HERNANDEZ MENDIETA et al. «Sistema Experto Difuso
aplicado al diagnóstico de fallas industriales mediante el conocimiento
experto obtenido de la herramienta RCM». En: (2016).

[24] Sriparna Majumdar y Aaron Brick. Recognizing Handwriting Styles in a
Historical Scanned Document Using Scikit-Fuzzy c-means Clustering. 2022.
arXiv: 2210.16780 [cs.CV].

[25] Cyberbotics. Introduction to Webots. Online. 2023. URL:
https://cyberbotics.com/doc/guide/introduction-to-webots.

[26] David M Powers. «Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation». En: arXiv preprint
arXiv:1207.4683 (2007).

[27] Geoffrey Hinton. «Neural networks for machine learning». En: Coursera
(2012).

https://doi.org/https://doi.org/10.1016/S1474-6670(17)50883-6
https://www.sciencedirect.com/science/article/pii/S1474667017508836
https://bibliotecadigital.univalle.edu.co/handle/10893/17413
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://doi.org/https://doi.org/10.1016/j.ins.2022.10.078
https://www.sciencedirect.com/science/article/pii/S0020025522011987
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/2210.16780
https://cyberbotics.com/doc/guide/introduction-to-webots

	Resumen
	IntroducciÃ³n general
	Concepto datos a texto
	LÃ³gica difusa
	Planteamiento y oportunidad del problema
	Estado del arte
	GeneraciÃ³n neuronal consciente de la lÃ³gica
	Ã“ndice de calidad del aire
	DesafÃ�o en la generaciÃ³n de texto a partir de datos
	Operaciones guiadas por modelos neuronales secuencia a secuencia seq2seq
	SelecciÃ³n de contenido, macroplanificaciÃ³n y planificaciÃ³n secuencial variacional
	Tabla comparativa de modelos D2T

	MotivaciÃ³n
	Objetivos y alcance

	IntroducciÃ³n especÃ�fica
	Sistema de inferencia difusa tipo Mamdani
	FuzzyficaciÃ³n
	ActivaciÃ³n de las reglas difusas
	DefuzzyficaciÃ³n

	Sistema GeNeSys
	Sistema de inferencia difusa basada en red adaptativa
	Mapa auto organizado

	Variables de entrada
	Arquitecturas con redes neuronales recurrentes
	Celdas de memoria de largo y corto plazo
	Unidad recurrente con compuertas
	Modelo secuencia a secuencia con RNN
	Comparativa de redes neuronales recurrentes


	DiseÃ±o e implementaciÃ³n
	GeneraciÃ³n del conjunto de datos de entrenamiento
	DefiniciÃ³n de conjuntos difusos
	Memoria asociativa difusa
	TabulaciÃ³n de los datos

	Preprocesamiento del texto y los datos
	AnÃ¡lisis exploratorio de datos
	Etiquetado de datos y asignaciÃ³n de frases objetivo

	DescripciÃ³n del modelo implementado
	Entrenamiento del modelo

	Ensayos y resultados
	Software utilizado
	ImplementaciÃ³n del modelo en webots

	Pruebas unitarias
	Resultados por etapas del NLG 
	Errores en las secuencias generadas en el dataset de test

	CertificaciÃ³n en individuo
	DistribuciÃ³n de los datos del instructor
	Resultados con los datos del instructor

	MÃ©tricas
	Exactitud y pÃ©rdida en entrenamiento, validaciÃ³n y pruebas

	ComparaciÃ³n con investigaciones relacionadas
	Impacto del ANFIS en el modelo NLG

	Conclusiones
	Conclusiones generales 
	PrÃ³ximos pasos

	Bibliografía

